Posts Tagged ‘glycemic index’

Manipulating The Glycemic Index Diet – The Winning Edge ???

distance runners, Fitness, nutrition, performance, Recovery - Repair, strength | Posted by admin September 13th, 2015

A high-carbohydrate training diet is a must for optimum sports performance because it produces the biggest stores of muscle glycogen. Unlike the fat stores in the body, which can release almost unlimited amounts of fatty acids, the carbohydrate stores are small. They are fully depleted after two or three hours of strenuous exercise. This depletion of carbohydrate stores is called “hitting the wall.” The blood glucose concentration begins to decline at this point. If exercise continues as the same rate, blood glucose may drop to levels that interfere with brain function and cause disorientation and unconsciousness.

All else being equal, the eventual winner is the person with the largest stores of muscle glycogen. It is important to maximize your muscle glycogen stores by ingesting a high-carbohydrate training diet and by carb loading in the days prior to the competition.

There are times when low G.I. foods provide an advantage and times when high G.I. are better. For best performance a serious athlete needs to learn which foods have high and low G.I. factors and when to eat them. Understanding the glycemic index and making the best food choices can give you an advantage.

Low-GI Foods: Before the Event
Low-GI foods have been proven to extend endurance when eaten alone one or two hours before prolonged strenuous exercise. Low-GI foods are best eaten about two hours before the big event –so that the meal will have left the stomach but will remain in the small intestine, slowly releasing glucose energy, for hours afterwards. The slow rate and steady stream of glucose trickles into the bloodstream during the event. Most importantly, the extra glucose will still be available toward the end of the exercise, when muscle stores are running close to empty. In this way, low-GI foods increase endurance and prolong the time before exhaustion hits.

When a pre-event meal of lentils (low GI value) was compared with one of potatoes (high GI value), cyclists were able to continue cycling at high intensity (65 percent of their maximum capacity) for twenty minutes longer when the meal had a low G value. Their blood-glucose and insulin levels were still above fasting levels at the end of exercise, indicating that carbohydrates were continuing to be absorbed from the small intestine even after ninety minutes of strenuous exercise.

In any sport context, it’s critical to select low-GI foods that do not cause gastrointestinal discomfort (stomach cramps, etc.). Some low-GI foods, such as legumes that are high in fiber or ingestible sugars, may produce symptoms in people not use to eating large amounts of them. There are plenty of low-fiber, low-GI choices, including pasta, noodles, and Basmati rice.

High- GI Foods: During and After the Event
While the pre-event meal should have a low GI value, scientific evidence indicates that there are times when high-GI foods are preferable. This includes during the event, after the event, and after normal training sessions. This is because high-GI foods are absorbed faster and stimulate more insulin, the hormone responsible for getting glucose back into the muscles for either immediate or future use.

During the event
High-GI foods should be used during events lasting longer than ninety minutes. This form of carbohydrate is rapidly released into the bloodstream and ensures that glucose is available for oxidation in the muscle cells. Liquid foods are usually tolerated better than solid foods, for endurance racing for example, because they are emptied more quickly from the stomach. Sports drinks are ideal during the race because they replace water and electrolytes as well. If you feel hungry for something solid during a race, try jelly beans (GI value of 80) or another form of high-glucose candy. Consume 30 to 60 grams of carbohydrate per hour during the event.

After the event (recovery)
In some competitive sports, athletes compete on consecutive days, and glycogen stores need to be at their maximum each time. Here it is important to restock the glycogen store in the muscles as quickly as possible after each day’s events. High-GI foods are best in this situation. Muscles are more sensitive to glucose in the bloodstream in the first hour after exercise, so a concerted effort should be made to get as many high-GI foods in as soon as possible.

Suggested foods include most of the sports drinks which replace water and electrolyte losses, or high-GI rice (e.g., jasmine), breads, and breakfast cereals such as cornflakes or rice krispies. Potatoes cooked without fat are good choice too but their high satiety means it is hard to eat lots of them.

Carbohydrate Loading For Training & Understanding
Why This Is Important…

It’s not just your pre- and post-event meals that influence your performance. Very active people need to eat much larger amounts of carbohydrates than inactive people. Consuming a high-carbohydrate diet every day will help you reach peak performance. When athletes fail to consume adequate carbohydrates each day, muscle and liver glycogen stores eventually become depleted. Dr. Ted Costill at the University of Texas showed that the gradual and chronic depletion of stored glycogen may decrease endurance and exercise performance. Intense workouts two to three times a day draw heavily on the athlete’s muscle glycogen stores. Athletes on low-carbohydrate diet will not perform their best because muscle stores of fuel are low.
If the diet provides inadequate amounts of carbohydrate, the reduction in muscle glycogen will be critical. An athlete training heavily should consume about 500 to 800 grams of carbohydrate a day (about two to three times normal) to help prevent carbohydrate depletion. Typically, American adults consume between 200 to 250 grams of carbohydrates each day.

Could a High-GI Diet Be Harmful to Athletes?

By virtue of their high activity levels, athletes have optimal insulin sensitivity. When they eat high-carbohydrate, high-GI foods, blood glucose and insulin levels rise far less in them than in the average person. This also provides the athlete with a bonus by not exposing their bodies to dangerous levels of blood glucose which produce disease in sedentary, insulin resistant individuals.

Adapted from the Book: The New Glucose Revolution
Written by: Jennie Brand-Miller, PhD
Thomas M.S. Wolever, MD PhD
Stephen Colagiuri, MD
Kaye Foster-Powell, M Nutr & Diet

Inflammation – degrades health at the cellular level

anti-aging, disease, Fitness, Free Radicals, nutrition, performance, Recovery - Repair | Posted by admin May 25th, 2012

Inflammation is central to the body’s ability to defend, maintain and repair itself. Its symptoms appear as redness, heat, swelling and pain, announcing a part of the body that is inflamed.  Heat and redness are signs of blood rushing to the injured area. Swelling is from changes in the small blood vessels that allow plasma to seep into the tissues. Pain results from the release of compounds used by the immune system to draw defensive support to the injured area. The inflammatory response is regulated by hormones which both intensify and dampen the response.  Unchecked inflammation, or chronic inflammation, is abnormal, and occurs upon an imbalance of these hormones which inhibits the ability to turn off the defensive action when healing is complete.

Chronic inflammation extends beyond the location of the original injury, and spreads to areas of the body which are healthy. It is at the cellular level that chronic inflammation begins and is most often due to oxidative stress, brought on by the burning of energy in our bodies along with toxic elements in our environment. Toxins in the form of free radicals build up over time in our bodies, from both external and internal sources (internally, the consumption of fuel by our cells). These free radicals cause an inflammatory reaction at the cellular level, becoming chronic over time.

It is becoming widely known that this inflammation at the cellular level is at the root of over 200 common degenerative, chronic diseases.  A broad category of inflammation related disease is autoimmunity. These diseases include Type I Diabetes, Rheumatoid arthritis, asthma, eczema, coronary heart disease, Alzheimer’s, Parkinson’s, ALS, and even cancer.

There is also mounting evidence of a critical role of inflammation in the development of hypertension. Metabolic syndrome, marked by increased levels of C-reactive protein, is associated the inflammatory response, and a known precursor to high blood pressure, and an increased risk of heart attack and stroke.

Oxidative stress promotes the inflammatory response because the body sees the oxidation of cells as injury, and where excessive oxidative stress exists, inflammation begins to cause the body’s immune system to attack otherwise healthy cells.

Inflammation can be avoided by choices in the diet.

The macronutrients (fats, carbohydrates, and proteins) and micronutrients (vitamins, minerals, enzymes and phytonutrients) we consume have a direct role in maintaining a healthy inflammatory response.

Macronutrients:

Fats:
We all know about the bad fats (the saturated fats) and the good fats (polyunsaturated and monounsaturated fats). The saturated fats will have a more pro-inflammatory response in our bodies. Some fats are extremely pro-inflammatory. These are the artificially hardened fats: margarine, vegetable shortening, and partially hydrogenated vegetable oils. These products include oxidized fatty acids and trans fats. Balancing essential fatty acids (EFAs) is critical in maintaining the body’s ability to temper the inflammatory response. In general, the hormones synthesized from omega-6 fatty acids, which are abundant in our SAD (Standard American Diet) increase inflammatory reaction, while the hormones we create from omega-3 fatty acids have the dampening effect on this response. In the distant past our diets consisted of a more equivalent amount of these fats, but are now heavily weighted in the omega-6 fats. Unfortunately, omega-3’s are much harder to come by than omega-6’s. They are found in low concentrations in leafy greens, a few seeds and nuts (pumpkin seeds, walnuts, flax, hemp) and a few vegetable oils (soy, canola), sea vegetables, and oily fish from cold waters (salmon, sardines herring, mackerel, black cod, and bluefish). Animals that are allowed to graze on grass rather than being fattened on grains accumulate omega-3s in their fat. Oxidized fatty acids occur when oils are exposed to air, light and heat. Rancidity is a sign of oxidation; if your oil smells at all funny, toss it! This includes nuts and seeds, which do not have a long shelf life. The omega-3’s in these foods break down with oxidation, and as with oils, dispose of them when they begin to smell the least bit rancid. Refrigeration can extend their shelf life.

Carbohydrates:

As with the fats, our sources of carbohydrates can be pro-inflammatory. The glycemic index and glycemic load are indicators of the oxidative stress that will occur as a result of ingesting certain foods.  As you eat more high-GI foods, such as bread, white potatoes, white pasta, sugars, chips, crackers and snack foods, your body processes these foods as simple sugars. It burns these sugars very rapidly, causing excessive oxidation which results in an inflammatory response. Eat foods with a low-GI such as whole grains, beans, sweet potatoes, winter squashes and other vegetables, temperate fruits (berries, cherries, apples and pears) and less refined or processed food. Eating these foods will avoid inflammation, as the body will process these foods in a more regulated manner.

Proteins:
The influence of proteins on inflammation is not as direct, but are more a result of their fat and carbohydrates. Animal fats are more commonly saturated, while they also come with greater environmental contamination than plant foods.  Toxins from this environmental contamination cause inflammatory response from the resulting oxidative stress. Vegetable sources of proteins include soy and other legumes. These sources of protein are no less nutritious than meat protein but limit and even aid in controlling chronic inflammation.  Fish is highly recommended in favor of meat for its omega-3 fatty acids, but it is desirable to avoid some fish, such as tuna or shark, for their levels of mercury and PCBs. Good choices are wild Alaskan salmon, Alaskan black code (sablefish or butterfish), and sardines.

If fish oil supplements are taken, they should be distilled and toxin free, and not from farmed fish as they will contain no omega-3s which are derived from plankton and other natural sources not available to farm fish.  If you are taking EFA supplements, try to find those which have parental rather than derived fatty acids, and contain the correct balance.

Micronutrients:

Vitamins, minerals, enzymes, and phytonutrients are obtained for the most part from fruits and vegetables. We are told by the FDA that we should consume from 5-9 servings of fruit per day (1 cup of raw or 1/2 cup of cooked is considered one serving).

However it is not recommended that variety and raw foods are extremely important considerations. But it is well known that these nutrients are critical in reducing oxydative stress and related inflammation.

Phytonutrients are indicated by the colors of fruit and vegetables. There are tens of thousands of known phytonutrients, and more are being studied every day.  For example, the phytonutrients creating the red, blue, and purple in fruits and vegetables contain anthocyanins, which are water soluble. Anthocyanins are part of a larger subgroup of plant compounds called flavanoids, which are a subclass of plant polyphenols.  Plant polyphenols are known to have significant antioxidant capabilities, and so in turn, limit inflammatory response. Plant polyphenols have been studied for some time now for their role in protecting cells against cancerous conditions.

Reference:  Nutrition-To-Wellness
Nutrition and Health Blog, Discover Wellness, by Vicky Berry

Sugar is Sugar ??? – Not So . . .

anti-aging, disease, Fitness, nutrition, obesity, performance | Posted by admin November 14th, 2011

Your Brain Reacts to Fructose and Glucose in  Very Different Ways

A study performed at Oregon Health and  Science University is intriguing, as it shows that the difference between  fructose and glucose is not just limited to how they’re metabolized in your  body; your brain also reacts to these two sugars in entirely different ways. Nine healthy, normal-weight subjects  received either glucose, fructose, or saline (as the control). Their brains  were then scanned to evaluate activity around the hypothalamus, which is a key  player in appetite control and production of metabolic hormones. Interestingly, the researchers  discovered that the “cortical control areas” surrounding the  hypothalamus responded very differently to each substance:

  • Glucose significantly raised the level of neural activity for about 20 minutes
  • Fructose reduced neural activity in the area for about the same amount of time
  • Saline had no effect on neural activity

So, what does this mean?

At this point, the implications of these differences are unclear. The Chicago Tribune reported that:

“At this point, said [lead researcher] Purnell in a phone interview, it means nothing more than that the two substances did prompt different responses in the brain–that the brain did not respond to them identically.

Within some of the “cortical control areas” where differences were seen, lie some important neural real estate, including regions where notions of reward and addiction are processed.

As scientists have a closer look in future studies, they should be able to zero in on which specific areas are affected differently by the two forms of sugar.”

So, time will tell what these latest findings really mean, but we already know that fructose has a detrimental impact on two hormones involved with satiety and hunger, namely leptin and ghrelin, and that this influence sets in motion a vicious cycle of hunger, increased food intake, and increased fat storage.

Fructose Packs on the Pounds Faster than Any Other Nutrient

Part of what makes HFCS so unhealthy is that it is metabolized to fat in your body far more rapidly than any other sugar. The entire burden of metabolizing fructose falls on your liver, and it promotes a particularly dangerous kind of body fat, namely adipose fat. This is the fat type of fat that collects in your abdominal region and is associated with a greater risk of heart disease.  Additionally, because most fructose is consumed in liquid form (i.e. soda and sweetened beverages of all kinds), its negative metabolic effects are magnified. Because while HFCS has about the same amount of fructose as cane sugar, the fructose in HFCS is in its “free” form and not attached to any other carbs. The fructose in fruits and in cane sugar is bonded to other sugars which results in a decrease in its metabolic toxicity.

Consuming foods that contain high amounts of fructose—even if it’s a natural product—is, to put it bluntly, the fastest way to trash your health. Among the health problems you invite with a high-fructose diet are:

  • Obesity, insulin resistance, metabolic syndrome and type 2 diabetes
  • Elevated triglycerides and LDL (bad) cholesterol levels
  • Elevated blood pressure
  • Liver disease
  • Depletion of vitamins and minerals—Unbound fructose, found in large quantities in HFCS, can interfere with your heart’s use of minerals such as magnesium, copper and chromium.
  • Cardiovascular disease, arthritis, gout, and cancer

Beware: Mixing Fructose with Glucose Increases Destructive Effect

Fructose consumption clearly causes insulin resistance whereas straight glucose does not. However, it’s worth knowing that glucose accelerates fructose absorption!  So when you mix glucose and fructose together, you absorb more fructose than if  you consumed fructose alone…

This is an important piece of information if you are struggling to control your weight. Remember, sucrose, or table sugar,  is exactly this blend — fructose plus glucose. So, the key to remember is to not get too nit-picky about the names of the sugars. ALL of these contribute to decreased health:

  • Sucrose (table sugar)
  • Corn syrup
  • High fructose corn syrup (HFCS)
  • Crystalline fructose, and any other high-fructose sweetener they may dream up
  • Natural fructose in the form of fruits, fruit juices, and natural sweeteners such as honey and agave.

Is Fructose from HFCS Worse than Fructose from Table Sugar?

High fructose corn syrup is about 55 percent fructose while table sugar is about 50 percent. The fructose in the corn syrup is also dissociated from the glucose, unlike table sugar which has it attached. So HFCS is clearly worse than table sugar, but not orders of
magnitude. It is only marginally worse.

The MAIN reason why fructose and HFCS are so bad is that in the mid 70s two things happened. Earl Butz changed the US Agriculture policy to massively subsidize corn production in the US, and scientists also figured out how to make HFCS in the lab from corn.  The combination of these two events made fructose VERY cheap. So cheap that it’s put in virtually all processed  foods because it is virtually free and massively improves the flavor of most foods. So if you are a processed food producer there are virtually no downsides. So it becomes a QUANTITY issue, and the average person is now consuming 600 percent more than their ancestors did, and some are consuming 1500 percent more. So the massive increase in this toxin is what is causing the problem. If table sugar was as cheap and used as much it would cause virtually identical side effects.

Fructose Metabolism Basics

Without getting into the very complex biochemistry of carbohydrate metabolism, it is important to understand how your body processes glucose versus fructose. Dr. Robert Lustig, Professor of Pediatrics in the Division of Endocrinology at the University of California, has been a pioneer in decoding sugar metabolism. His work has highlighted some major differences in how different sugars are broken down and used.

Here’s a summary of the main points:

  • After eating fructose, 100 percent of the metabolic burden rests on your liver. With glucose, your liver has to  break down only 20 percent.
  • Every cell in your body, including your brain, utilizes glucose. Therefore, much of it is “burned up” immediately after you consume it. By contrast, fructose is turned into free fatty acids (FFAs), VLDL (the damaging form of cholesterol), and triglycerides, which get stored as fat.
  • The fatty acids created during fructose metabolism accumulate as fat droplets in your liver and skeletal muscle tissues, causing insulin resistance and non-alcoholic fatty liver disease (NAFLD). Insulin resistance progresses to metabolic syndrome and type II diabetes.
  • Fructose is the most lipophilic carbohydrate. In other words, fructose converts to activated glycerol (g-3-p), which is directly used to turn FFAs into triglycerides. The more g-3-p you have, the more fat you store. Glucose does not do this.
  • When you eat 120 calories of glucose, less than one calorie is stored as fat. 120 calories of fructose results in 40 calories being stored as fat. Consuming fructose is essentially consuming fat!
  • The metabolism of fructose by your liver creates a long list of waste products and toxins, including a large amount of uric acid, which drives up blood pressure and causes gout.
  • Glucose suppresses the hunger hormone ghrelin and stimulates leptin, which suppresses your appetite. Fructose has no effect on ghrelin and interferes with your brain’s communication with leptin, resulting in overeating.

So, if anyone tries to tell you “sugar is sugar,” they are way behind the times. As you can see, there are major differences in how your body processes each one. The bottom line is: fructose leads to increased belly fat, insulin resistance and metabolic syndrome — not to mention the long list of chronic diseases that directly result.

If you, like so many others, have struggled with your weight for years; examined your diet; avoided fat and counted your calories, yet not getting anywhere and wondering what you’re doing wrong, please pay very close attention to this issue!

In many cases the primary culprit is an excessive intake of hidden sugar in the form of fructose, whether natural fructose (such as agave syrup or 100 percent fruit juice, for example), or in the form of corn syrup (or high fructose corn syrup), which is a main ingredient in countless beverages and processed, pre-packaged foods.  It’s extremely easy to consume high amounts of fructose on a daily basis, especially if most of your foods are processed in any way, or if you drink sodas or any other sweetened beverages  such as ice-teas, fruit juices and sports drinks. As previously discussed, even seemingly “health-conscious” beverages like Vitamin Water, Jamba Juice and Odwalla SuperFood contain far more added sugar and/or fructose than many desserts!  So please, understand that it’s not dietary fat that’s making you fat. It’s fructose.

Recommended Fructose Allowance

As a standard recommendation, keep your TOTAL fructose consumption below 25 grams per day.

For most people it would also be wise to limit your fructose from fruit to 15 grams or less, as you’re virtually guaranteed to
consume “hidden” sources of fructose if you drink beverages other than water and eat processed food. Remember, the average 12-ounce can of soda contains 40 grams of sugar, at least half of which is fructose, so one can of soda ALONE would exceed your  daily allotment.  Fifteen grams of fructose is not much — it represents two bananas, one-third cup of raisins, or two Medjool  dates. In his book, The Sugar Fix, Dr. Johnson includes detailed tables showing the content of fructose in different foods — an information base that isn’t readily available when you’re trying to find out exactly how much fructose is in various foods. We encourage you to pick up a copy of this excellent resource.

Here’s a quick reference list of some of the most common fruits that you can use to help you count your fructose grams:

Limes –                   1 medium = 0 grams
Lemons –                1 medium = 0.6 grams
Cranberries-           1 cup= 0.7 grams
Passion fruit-         1 medium = 0.9 grams
Prune –                     1 medium = 1.2 grams
Apricot –                  1 medium = 1.3 grams
Guava –                    2 medium = 2.2 grams
Date deglet            1 medium = 2.6 grams
Cantaloupe –          1/8 portion = 3.2 grams
Raspberries-         1 cup = 3.0 grams
Clementine –         1 medium = 3.6 grams
Kiwifruit –               1 medium = 3.6 grams
Blackberries –        1 cup = 3.5 grams
Star fruit –              1 medium = 3.6 grams
Cherries sweet –   10 total = 3.8 grams
Strawberries –       1 cup = 3.8 grams
Cherries sour –      1 cup = 4.0 grams
Pineapple –            1 slice = 4.0 grams
Grapefruit pink –  1 half =   4.3 grams
Boysenberries –     1 cup = 4.6 grams
Tangerine –            1 medium = 4.8 grams
Nectarine –             1 medium = 5.4 grams
Peach –                    1 medium = 5.9 grams
Orange navel –       1 medium = 6.1 grams
Papaya –                  1 half = 6.3 grams
Mellon honeydew –  1 eighth = 6.7 grams
Banana –                  1 medium = 7.1 grams
Blueberries –           1 cup = 7.4 grams
Date medjool –       1 medium = 7.7 grams
Apple –                     1 medium = 9.5 grams
Persimmon –           1 medium = 10.6 grams
Watermelon –         1 sixteenth = 11.3 grams
Pear –                       1 medium = 11.8 grams
Raisins –                  1 forth cup = 12.3 grams
Grapes seedless –   1 cup = 12.4 grams
Mango –                   1 half = 16.2 grams
Apricots dried –     1 cup = 16.4 grams
Figs dried –            1 cup = 23.0 grams 

The Way Toward Better Health…

There is nothing benign about the fructose consumption inherent in our modern diet. It is literally supercharged with fructose, and we’re seeing the consequences of this type of eating in our skyrocketing rates of obesity, diabetes, heart disease, and cases of non-fatty liver disease.  Fortunately, there’s plenty of good news here.

There IS a way out of this evil circle, and that is a return to a more holistic diet based on whole foods, along with physical exercise and safe sun exposure to optimize your vitamin D levels.  One of the easiest things you can do to quickly improve your health is to eliminate all soda and sweetened beverages from your life.   ALL soda, because even though HFCS is clearly something you want to avoid, it is still not as bad as artificial sweeteners,  which damage your health even more rapidly than HFCS.  Then, since most processed foods also contain HFCS, avoiding as many processed foods as possible is your next step.
If you want an occasional sweetener, consider:

  1. The herb stevia
  2. Dextrose (pure glucose)

Say no to agave syrup since it is a highly processed sap that is almost all fructose. It is one of the more seriously mismarketed foods in the natural food world. An informal study found the most popular agave brands ranged from 59 to 67 percent pure fructose, far worse than HFCS. Once you realize the hazards of fructose and begin to avoid it in earnest, your diet will significantly improve, which is an essential factor for a long, healthy life.

Reference:  Mercola.com

Sugar is poison to the human body? . . . Why?

anti-aging, Fitness, nutrition, Recovery - Repair | Posted by admin October 13th, 2010

Sugar’s toxic wrath is in part due to its composition as a purely refined carbohydrate.  It is a chemical.  Our bodies cannot utilize this poison because it has been stripped of all vitamins, minerals, and all other nutrients that help your body create optimum health. What occurs when sugar is ingested is a balancing act that takes place inside our bodies.

Because balance or homeostasis is so essential to our bodies, the minerals sodium, potassium, magnesium and calcium are utilized to create this balance.  For example, in order to neutralize the blood from sugar (sugar creates an acidic body), calcium is taken from the bones and teeth, thus, decay and osteoporosis may occur.  If sugar is consumed every day, our bodies eventually will be depleted of these very important minerals and lead to mineral deficiencies that depletes your health and weakens your defenses against disease. This process allows the generation of dreaded free-radicals to cause major damage.  

(Free-radicals lead to cell destruction and single nucleotide polymorphisms at replication during new body cell regeneration)

Excess sugar affects every single organ in the body – including the liver. The liver is where sugar is stored in the form of glycogen (glucose complex).  Eventually, if sugar is consumed every day, your liver will be unable to store the excess sugar and is returned to the blood in the form of fatty acids.  Guess where those fatty acids are stored?  They are stored in the most inactive areas: The belly, the buttocks, the breasts and the thighs.  After these areas have been filled-up, the fatty acids then get distributed to organs such as the heart and kidneys.

Sugar hinders the body’s immune system and predisposes people to illness and disease.  Our white blood cells are adversely affected. Here are just some health conditions associated with over-consumption of sugar: Obesity, cancer, aging, cardiovascular disease, high blood pressure, adult-onset type II diabetes, eczema, kidney stones, depression, Candida (yeast over-growth), anxiety, dental cavities, atherosclerosis, poor brain function and countless other conditions.

Cancer is affected by sugar due to the cancer cell’s main source of fuel:  Glucose. By controlling blood glucose, the cancer cells are starved for fuel and the immune system is bolstered.

We think of sugar as the granulated white stuff, but it can be disguised in many forms such as: corn syrup, fructose, sucrose, lactose, molasses, honey, maltose, fruit juice and many other forms. It is essential that we become aware of the hidden sources of sugar found in processed foods.  In order to achieve optimum health, it is essential to mindfully choose whole grains, fruits, vegetables, lower stress levels, exercise and avoid sugar as much as possible.

Reference: Lori L. Shemek, PhD, CNC, CLC has devoted the past 20 years, practicing and teaching others about the principles of nutrition. As an Author, Health Expert and Speaker, Dr. Shemek combines her background in Psychology with a lifetime of practicing natural and preventive wellness to create optimum health for her clients at every level of health. Dr. Shemek holds a Doctorate in Psychology, she is a Certified Nutritional Consultant, and a Certified Life Coach. Dr. Shemek is the Founder and President of DLS HealthWorks, LLC.  http://www.dlsHealthWorks.com

Pycnogenol Supports Control of the Glycemic Index –

nutrition, Recovery - Repair | Posted by admin February 21st, 2010

Slows Glucose Uptake After Eating :

Research in the Journal of Diabetes Research and Clinical Practice reveals that Pycnogenol which provides many health benefits, is 190 times more effective than prescription medicine acarbose (Precose) in slowing uptake of glucose after eating a meal, thereby preventing after-meal glucose spikes.

The study, conducted at University of Wurzburg, Germany, by Dr. Petra Hogger, found that Pycnogenol worked by inhibiting the intestinal enzyme alpha-glucosidase, which breaks down complex carbohydrates such as starch and table sugar into glucose molecules.

The high levels of procyanidins (flavonoids) in Pycnogenol are particularly good at inhibiting alpha-glucosidase. As a result, meal carbohydrates break down into glucose slowly and enter the bloodstream more steadily, over a longer period of time. This prolongs a feeling of fullness and reduces after-meal glucose spikes.

Pycnogenol is extracted from the bark of maritime pine trees that grow on the coast of southwest France and contain a unique combination of procyanidins, bioflavonoids and organic acids. Bioflavonoids, which are also found in fruits, help vitamin C function as an antioxidant. Pycnogenol contains a group of bioflavonoids called proanthocyanidins.

Help Slow Retinopathy:

Proanthocyanidins have been shown to increase the elasticity of capillaries, the small blood vessels found in the retina, thereby improving circulation. In France, Pycnogenol is the number one prescription for retinopathy, the diabetes-caused damage to blood vessels in the retina that can lead to blindness.

More than 250 studies and reviews have been published about Pycnogenol’s salutary effects, and it is available in more than 600 supplements. The recommended daily dosage of Pycnogenol is 30-60 mg.

Reference: Diabetes-Health – April-May 2007

Isotonic OPC 3 with Pycnogenol

Manipulating The Glycemic Index Diet – The Winning Edge ???

Fitness, nutrition, performance, Recovery - Repair, strength | Posted by admin November 4th, 2009

A high-carbohydrate training diet is a must for optimum sports performance because it produces the biggest stores of muscle glycogen. Unlike the fat stores in the body, which can release almost unlimited amounts of fatty acids, the carbohydrate stores are small. They are fully depleted after two or three hours of strenuous exercise. This depletion of carbohydrate stores is called “hitting the wall.” The blood glucose concentration begins to decline at this point. If exercise continues as the same rate, blood glucose may drop to levels that interfere with brain function and cause disorientation and unconsciousness.

All else being equal, the eventual winner is the person with the largest stores of muscle glycogen. It is important to maximize your muscle glycogen stores by ingesting a high-carbohydrate training diet and by carb loading in the days prior to the competition.

There are times when low G.I. foods provide an advantage and times when high G.I. are better. For best performance a serious athlete needs to learn which foods have high and low G.I. factors and when to eat them. Understanding the glycemic index and making the best food choices can give you an advantage.

Low-GI Foods: Before the Event
Low-GI foods have been proven to extend endurance when eaten alone one or two hours before prolonged strenuous exercise. Low-GI foods are best eaten about two hours before the big event –so that the meal will have left the stomach but will remain in the small intestine, slowly releasing glucose energy, for hours afterwards. The slow rate and steady stream of glucose trickles into the bloodstream during the event. Most importantly, the extra glucose will still be available toward the end of the exercise, when muscle stores are running close to empty. In this way, low-GI foods increase endurance and prolong the time before exhaustion hits.

When a pre-event meal of lentils (low GI value) was compared with one of potatoes (high GI value), cyclists were able to continue cycling at high intensity (65 percent of their maximum capacity) for twenty minutes longer when the meal had a low G value. Their blood-glucose and insulin levels were still above fasting levels at the end of exercise, indicating that carbohydrates were continuing to be absorbed from the small intestine even after ninety minutes of strenuous exercise.

In any sport context, it’s critical to select low-GI foods that do not cause gastrointestinal discomfort (stomach cramps, etc.). Some low-GI foods, such as legumes that are high in fiber or ingestible sugars, may produce symptoms in people not use to eating large amounts of them. There are plenty of low-fiber, low-GI choices, including pasta, noodles, and Basmati rice.

High- GI Foods: During and After the Event
While the pre-event meal should have a low GI value, scientific evidence indicates that there are times when high-GI foods are preferable. This includes during the event, after the event, and after normal training sessions. This is because high-GI foods are absorbed faster and stimulate more insulin, the hormone responsible for getting glucose back into the muscles for either immediate or future use.

During the event
High-GI foods should be used during events lasting longer than ninety minutes. This form of carbohydrate is rapidly released into the bloodstream and ensures that glucose is available for oxidation in the muscle cells. Liquid foods are usually tolerated better than solid foods, for endurance racing for example, because they are emptied more quickly from the stomach. Sports drinks are ideal during the race because they replace water and electrolytes as well. If you feel hungry for something solid during a race, try jelly beans (GI value of 80) or another form of high-glucose candy. Consume 30 to 60 grams of carbohydrate per hour during the event.

After the event (recovery)
In some competitive sports, athletes compete on consecutive days, and glycogen stores need to be at their maximum each time. Here it is important to restock the glycogen store in the muscles as quickly as possible after each day’s events. High-GI foods are best in this situation. Muscles are more sensitive to glucose in the bloodstream in the first hour after exercise, so a concerted effort should be made to get as many high-GI foods in as soon as possible.

Suggested foods include most of the sports drinks which replace water and electrolyte losses, or high-GI rice (e.g., jasmine), breads, and breakfast cereals such as cornflakes or rice krispies. Potatoes cooked without fat are good choice too but their high satiety means it is hard to eat lots of them.

Carbohydrate Loading For Training & Understanding
Why This Is Important…

It’s not just your pre- and post-event meals that influence your performance. Very active people need to eat much larger amounts of carbohydrates than inactive people. Consuming a high-carbohydrate diet every day will help you reach peak performance. When athletes fail to consume adequate carbohydrates each day, muscle and liver glycogen stores eventually become depleted. Dr. Ted Costill at the University of Texas showed that the gradual and chronic depletion of stored glycogen may decrease endurance and exercise performance. Intense workouts two to three times a day draw heavily on the athlete’s muscle glycogen stores. Athletes on low-carbohydrate diet will not perform their best because muscle stores of fuel are low.
If the diet provides inadequate amounts of carbohydrate, the reduction in muscle glycogen will be critical. An athlete training heavily should consume about 500 to 800 grams of carbohydrate a day (about two to three times normal) to help prevent carbohydrate depletion. Typically, American adults consume between 200 to 250 grams of carbohydrates each day.

Could a High-GI Diet Be Harmful to Athletes?

By virtue of their high activity levels, athletes have optimal insulin sensitivity. When they eat high-carbohydrate, high-GI foods, blood glucose and insulin levels rise far less in them than in the average person. This also provides the athlete with a bonus by not exposing their bodies to dangerous levels of blood glucose which produce disease in sedentary, insulin resistant individuals.

Adapted from the Book: The New Glucose Revolution
Written by: Jennie Brand-Miller, PhD
Thomas M.S. Wolever, MD PhD
Stephen Colagiuri, MD
Kaye Foster-Powell, M Nutr & Diet