Posts Tagged ‘metabolism’

Immune System Response, Exercise and Inflammation

anti-aging, disease, Fitness, Free Radicals, inflammation, nutrition, performance, Recovery - Repair | Posted by admin April 30th, 2016

biocellsLike other stressors in our lives—allergic reactions, lack of sleep, emotional duress, poor nutritional intake and excess body fat—exercise can directly affect the body’s complex immune system and produce a cascading effect of inflammatory responses.

 

Inflammation occurs at the peak of the immune response when conditions such as fever trigger the body to increase blood flow and bring in specialized immune cells to help repair and remove damaged tissues.

An acute (short-term) response to internal and external invaders is the basis of a successful immune system. However, when inflammatory stressors become chronic (long-term) and accumulate, trouble begins.

The immune system is divided into two types of responses: natural and specific. The natural response is an all-purpose first line of defense comprising cells that identify and attack a number of different invaders in a short time frame. White blood cells and other cells devour invading pathogens and initiate inflammation by releasing toxic substances that damage and then consume the invader or damaged tissue.

The second component of the immune system, the specific response, is far more complex and mostly beyond the scope of this discussion. Simply put, the specific response recognizes a specific invader, like bacteria or an allergen, and then mounts a defense against it.

This intricate protective mechanism helps maintain the biochemical balance in the body that maintains health or promotes healing. Many body systems must remain balanced for homeostasis to occur. One important example is the endocrine system, which controls much of the body’s regulating hormones, the body’s pH, body temperature and chemicals in the bloodstream, all of which are delicately balanced and vulnerable if altered for a significant length of time.

Physical & Mental Stressors

It should be noted that the immune system is well designed to handle such physical stressors as microbes, sprained ankles and hay fever. What is not clear, however, is how the immune system reacts to the accumulation of other physical stressors—poor nutrition, lack of sleep, food allergies or sensitivities, postural and joint misalignment and foreign substances.

Additionally, behavioral scientists have been examining the effect of mental and emotional stressors. Significant research has indicated that mental stressors provide as great a challenge to homeostasis as physical conditions like influenza or muscle tears.

The term allostatic load refers to the method by which the body adjusts to the combined effect of many physical and mental stressors. A high allostatic load is essentially an overload of those different stressors, creating what one researcher dubbed “a cascade of cause and effect”.

The connecting factor among physical, emotional and mental stressors occurs in an area of the brain known as the HPA axis. Consisting of the hypothalamus, pituitary gland and adrenal gland, the HPA axis serves as the body’s emergency alert system that responds to a variety of stressors by releasing hormones, such as epinephrine and norepinephrine, which prepare different body systems for action. The HPA axis also releases growth hormone (GH) and cortisol; GH helps repair tissue and promotes growth, whereas cortisol fuels the body by maintaining proper glucose and fatty acid levels.

When faced with a lot of different stressors (i.e., a high allostatic load), the intricately tuned immune system can get caught in a stress hormone–inflammation loop. Hormones are released at higher than normal levels, leading to an increase in pro-inflammatory cytokines, which, in a vicious circle, then re-stimulates the HPA axis. Cortisol levels also increase and alter the immune/ inflammation system, resulting in higher levels of inflammatory factors in the body.

Exercise & Inflammation

So how do the immune system, HPA axis and stress response all fit into the exercise and fitness equation? Exercise is a physical stressor, and the exercise stress response follows similar inflammatory physiological pathways to those activated by other physical and mental stimuli.

In fact, the response to exercise is so parallel that exercise scientists borrowed the phrase general adaptation syndrome (GAS) from Hans Selye, a behavioral scientist who pioneered much of the early extensive research on the stress response. According to Selye, stress causes a temporary decrease in function, followed by an adaptation that improves function. In order for us to improve our health, fitness or athletic ability, it is necessary to increase our efforts to fatigue-level intensities and then recover and refuel.

During exercise, the primary hormones that get released are

  • epinephrine (to increase heart rate and blood flow to the muscles)
  • norepinephrine (to raise blood pressure)
  • cortisol (to mobilize fuel sources and lower any inflammation)
  • growth hormone and glucagons (to protect blood glucose and mobilize other energy sources for fuel)

These hormones are the same as those secreted when the body is reacting to mental and emotional stressors.

If the exercise session was designed to elicit higher levels of strength or conditioning, some degree of muscle damage occurred, calling upon the immune system to respond in a number of ways, including an inflammatory response to help muscle repair. While this process promotes muscle regeneration, it can also slow the body’s ability to repair muscle tissue.

Contributing Factors for Inflammation

Many factors play a significant role in increasing body inflammation, including physical imbalances, diet, allergies, sleep deprivation, excess weight and age.

Physical Conditions. Postural and joint mal-alignments play a major role in inflammatory conditions. Exercisers who spend long periods of time sitting each day are especially vulnerable when performing certain upright movements that can create excessive friction in joint complexes. Excessive shoulder internal rotation, thoracic flexion and hip external rotation are classic seated mal-alignment issues that result in pain or damage to areas that then become inflamed.

Poor Diet. One huge contributing factor to inflammation is the Western convenience/comfort food diet, which is high in saturated and trans fats, simple carbohydrates and animal proteins. The American Dietetic Association (ADA) urges Americans to reduce their consumption of saturated and trans fatty acids to diminish risk factors for inflammation-based disorders such as cancer, cardiovascular disease, cerebral infarction and other immune disorders.. Food allergies and sensitivities also contribute to inflammation. The most common food allergies involve wheat gluten, nuts or shellfish. While less severe than allergies, food sensitivities can produce subtle inflammatory reactions to common trigger foods; for example, products made with dairy, corn, soy, wheat, sugar and nuts

Other Allergens. In addition to food, allergens such as chemicals, dust, mold or pollens can cause the body’s immune system to release chemical neurotransmitters called histamines, which trigger an inflammatory process in the blood vessels. The allergic reaction can be slight (e.g., itchy skin, runny nose) or far more serious (e.g., blood pressure drop, swelling, shortness of breath). Environmental pollutants, cleaning products and noise can also increase inflammation.

Sleep Deprivation. Lack of sleep is associated with inflammation. Sleep is a time for the body to recover and repair both mentally and physically. That’s why sleep experts recommend getting 7–9 hours nightly to function optimally. Studies indicate that this time period is critical for biochemical balance in substances like GH and cortisol.

Excess Weight. Biochemical imbalances have also been linked to inflammation caused by excess intra-abdominal fat. Beyond a certain level, excessive intra-abdominal fat produces a cortisol response, which tells the body to store fat; this begins a never-ending feedback loop.

Advanced Age. Another contributing factor is age. As we age, interleukin levels increase dramatically, which plays a role in the development of many diseases of aging, including heart disease, osteoporosis, Alzheimer’s disease and other cognitive impairment diseases.

Tailoring Exercise Programs

Research indicates that high-intensity (> 70% of maximal effort) exercise sessions lasting longer than 20–30 minutes or low-intensity (< 50%–70%) efforts lasting longer than 75 minutes can flood the body with stress and inflammation biochemical markers, initiating a cascading response. It therefore makes sense to devise a workout that stays within those time and intensity parameters.

Moderate exercise at lower intensities is the better course. Moderate exercise efforts for up to 60 minutes can actually reduce inflammatory markers, increase positive neurotransmitters (e.g., serotonin and endorphins) and improve brain chemistry. Moderate intensities also stimulate the growth of new brain cells, neurons and capillary growth to muscles and neurons.

According to most studies, exercising under the 70% effort level seems to be the baseline for reducing inflammation and stress hormone levels These reduced efforts should be combined with exercise programming design that includes myofascial release, flexibility training and corrective exercise. This type of program can help relieve stress, improve joint alignment and muscle activation and reduce the inflammatory response.

Mental Element

It is perfectly acceptable to give less of an effort and work at lower intensities during times of high stress. High-intensity, long-duration workouts are counterproductive if performed during a time of high demands and increased stress in other areas of life.

Managing the hormonal component of exercise can actually help produce gains. The outdated “no pain, no gain” approach can be detrimental to health because at best it stimulates the body to retain body fat or lose muscle mass and at worst it creates a chronic state of injury and illness.

Inflammation also supports the healing power of 7–8 hours of sleep. Sleep is critical to maintaining biochemical homeostasis. The primary function of sleep is to give the body and the mind some restorative time to help decrease systematic inflammation.

Proactive Anti-Inflammatory Strategy

Several proactive anti-inflammatory nutrition strategies that are fairly simple. For example, research has shown that inflammation can be prevented or reduced by the following:

  • adding more fruits and vegetables to the diet
  • reducing intake of trans fats and saturated fats
  • increasing intake of omega-3 fats (found in fish oils, olive oil, avocados and walnuts)
  • reducing intake of simple carbs and animal protein

Some herbs and other phytochemicals have been shown to significantly reduce inflammation in the body. For example, an active component in the herb turmeric called curcumin has been studied extensively for its ability to inhibit cancer cell growth. Ginger has exhibited the same properties. Some dietary supplements combine tumeric, ginger, rosemary, basil and other herbs to create a potent natural anti-inflammatory with no known side effects. Studies have found that this specific combination is as effective as some pharmaceutical compounds at stemming inflammation.

NSAIDs work to inhibit hormones in the body called prostaglandins, which are vital to many physiological processes but specifically cause the sensation of pain as a protective mechanism. Because these hormones are important in gastric function and because NSAIDs eliminate all prostaglandin activity, gastric distress can be a side effect. Newer studies are finding that instead of speeding recovery from muscular injury, ingestion of traditional NSAIDs may actually slow the process for several days as protein synthesis (tissue healing) is delayed.

Common types of traditional NSAIDs include aspirin, ibuprofen, naproxen, ketoprofen and indomethacin. It should be noted that while acetaminophen (Tylenol™) is classified as an NSAID, it exhibits little or no anti-inflammatory effects despite its analgesic properties.

Reference:   IDEA Health & Fitness Association     http://www.ideafit.com

Manipulating The Glycemic Index Diet – The Winning Edge ???

distance runners, Fitness, nutrition, performance, Recovery - Repair, strength | Posted by admin September 13th, 2015

A high-carbohydrate training diet is a must for optimum sports performance because it produces the biggest stores of muscle glycogen. Unlike the fat stores in the body, which can release almost unlimited amounts of fatty acids, the carbohydrate stores are small. They are fully depleted after two or three hours of strenuous exercise. This depletion of carbohydrate stores is called “hitting the wall.” The blood glucose concentration begins to decline at this point. If exercise continues as the same rate, blood glucose may drop to levels that interfere with brain function and cause disorientation and unconsciousness.

All else being equal, the eventual winner is the person with the largest stores of muscle glycogen. It is important to maximize your muscle glycogen stores by ingesting a high-carbohydrate training diet and by carb loading in the days prior to the competition.

There are times when low G.I. foods provide an advantage and times when high G.I. are better. For best performance a serious athlete needs to learn which foods have high and low G.I. factors and when to eat them. Understanding the glycemic index and making the best food choices can give you an advantage.

Low-GI Foods: Before the Event
Low-GI foods have been proven to extend endurance when eaten alone one or two hours before prolonged strenuous exercise. Low-GI foods are best eaten about two hours before the big event –so that the meal will have left the stomach but will remain in the small intestine, slowly releasing glucose energy, for hours afterwards. The slow rate and steady stream of glucose trickles into the bloodstream during the event. Most importantly, the extra glucose will still be available toward the end of the exercise, when muscle stores are running close to empty. In this way, low-GI foods increase endurance and prolong the time before exhaustion hits.

When a pre-event meal of lentils (low GI value) was compared with one of potatoes (high GI value), cyclists were able to continue cycling at high intensity (65 percent of their maximum capacity) for twenty minutes longer when the meal had a low G value. Their blood-glucose and insulin levels were still above fasting levels at the end of exercise, indicating that carbohydrates were continuing to be absorbed from the small intestine even after ninety minutes of strenuous exercise.

In any sport context, it’s critical to select low-GI foods that do not cause gastrointestinal discomfort (stomach cramps, etc.). Some low-GI foods, such as legumes that are high in fiber or ingestible sugars, may produce symptoms in people not use to eating large amounts of them. There are plenty of low-fiber, low-GI choices, including pasta, noodles, and Basmati rice.

High- GI Foods: During and After the Event
While the pre-event meal should have a low GI value, scientific evidence indicates that there are times when high-GI foods are preferable. This includes during the event, after the event, and after normal training sessions. This is because high-GI foods are absorbed faster and stimulate more insulin, the hormone responsible for getting glucose back into the muscles for either immediate or future use.

During the event
High-GI foods should be used during events lasting longer than ninety minutes. This form of carbohydrate is rapidly released into the bloodstream and ensures that glucose is available for oxidation in the muscle cells. Liquid foods are usually tolerated better than solid foods, for endurance racing for example, because they are emptied more quickly from the stomach. Sports drinks are ideal during the race because they replace water and electrolytes as well. If you feel hungry for something solid during a race, try jelly beans (GI value of 80) or another form of high-glucose candy. Consume 30 to 60 grams of carbohydrate per hour during the event.

After the event (recovery)
In some competitive sports, athletes compete on consecutive days, and glycogen stores need to be at their maximum each time. Here it is important to restock the glycogen store in the muscles as quickly as possible after each day’s events. High-GI foods are best in this situation. Muscles are more sensitive to glucose in the bloodstream in the first hour after exercise, so a concerted effort should be made to get as many high-GI foods in as soon as possible.

Suggested foods include most of the sports drinks which replace water and electrolyte losses, or high-GI rice (e.g., jasmine), breads, and breakfast cereals such as cornflakes or rice krispies. Potatoes cooked without fat are good choice too but their high satiety means it is hard to eat lots of them.

Carbohydrate Loading For Training & Understanding
Why This Is Important…

It’s not just your pre- and post-event meals that influence your performance. Very active people need to eat much larger amounts of carbohydrates than inactive people. Consuming a high-carbohydrate diet every day will help you reach peak performance. When athletes fail to consume adequate carbohydrates each day, muscle and liver glycogen stores eventually become depleted. Dr. Ted Costill at the University of Texas showed that the gradual and chronic depletion of stored glycogen may decrease endurance and exercise performance. Intense workouts two to three times a day draw heavily on the athlete’s muscle glycogen stores. Athletes on low-carbohydrate diet will not perform their best because muscle stores of fuel are low.
If the diet provides inadequate amounts of carbohydrate, the reduction in muscle glycogen will be critical. An athlete training heavily should consume about 500 to 800 grams of carbohydrate a day (about two to three times normal) to help prevent carbohydrate depletion. Typically, American adults consume between 200 to 250 grams of carbohydrates each day.

Could a High-GI Diet Be Harmful to Athletes?

By virtue of their high activity levels, athletes have optimal insulin sensitivity. When they eat high-carbohydrate, high-GI foods, blood glucose and insulin levels rise far less in them than in the average person. This also provides the athlete with a bonus by not exposing their bodies to dangerous levels of blood glucose which produce disease in sedentary, insulin resistant individuals.

Adapted from the Book: The New Glucose Revolution
Written by: Jennie Brand-Miller, PhD
Thomas M.S. Wolever, MD PhD
Stephen Colagiuri, MD
Kaye Foster-Powell, M Nutr & Diet

Are Your Prescriptions Depleting Your Nutritional Status ?

anti-aging, disease, Fitness, Free Radicals, nutrition, performance, Recovery - Repair, strength | Posted by admin September 1st, 2015

Becoming familiar with the nutritional depletion effects of taking prescription drugs must be considered in order to adjust diet and nutritional supplements for maintaining optimal health, strength and performance…  Check below for your potential risks…

 

Micronutrient Depletion Rx GuideRev 

(Revised  – September 2, 2015)

Patients shouldn’t self-medicate with supplements. Over-supplementing can be harmful.

Understanding how nutrients correlate with each other is a critical part of a personalized

supplement plan.

 

Sugar is Sugar ??? – Not So . . .

anti-aging, disease, Fitness, nutrition, obesity, performance | Posted by admin November 14th, 2011

Your Brain Reacts to Fructose and Glucose in  Very Different Ways

A study performed at Oregon Health and  Science University is intriguing, as it shows that the difference between  fructose and glucose is not just limited to how they’re metabolized in your  body; your brain also reacts to these two sugars in entirely different ways. Nine healthy, normal-weight subjects  received either glucose, fructose, or saline (as the control). Their brains  were then scanned to evaluate activity around the hypothalamus, which is a key  player in appetite control and production of metabolic hormones. Interestingly, the researchers  discovered that the “cortical control areas” surrounding the  hypothalamus responded very differently to each substance:

  • Glucose significantly raised the level of neural activity for about 20 minutes
  • Fructose reduced neural activity in the area for about the same amount of time
  • Saline had no effect on neural activity

So, what does this mean?

At this point, the implications of these differences are unclear. The Chicago Tribune reported that:

“At this point, said [lead researcher] Purnell in a phone interview, it means nothing more than that the two substances did prompt different responses in the brain–that the brain did not respond to them identically.

Within some of the “cortical control areas” where differences were seen, lie some important neural real estate, including regions where notions of reward and addiction are processed.

As scientists have a closer look in future studies, they should be able to zero in on which specific areas are affected differently by the two forms of sugar.”

So, time will tell what these latest findings really mean, but we already know that fructose has a detrimental impact on two hormones involved with satiety and hunger, namely leptin and ghrelin, and that this influence sets in motion a vicious cycle of hunger, increased food intake, and increased fat storage.

Fructose Packs on the Pounds Faster than Any Other Nutrient

Part of what makes HFCS so unhealthy is that it is metabolized to fat in your body far more rapidly than any other sugar. The entire burden of metabolizing fructose falls on your liver, and it promotes a particularly dangerous kind of body fat, namely adipose fat. This is the fat type of fat that collects in your abdominal region and is associated with a greater risk of heart disease.  Additionally, because most fructose is consumed in liquid form (i.e. soda and sweetened beverages of all kinds), its negative metabolic effects are magnified. Because while HFCS has about the same amount of fructose as cane sugar, the fructose in HFCS is in its “free” form and not attached to any other carbs. The fructose in fruits and in cane sugar is bonded to other sugars which results in a decrease in its metabolic toxicity.

Consuming foods that contain high amounts of fructose—even if it’s a natural product—is, to put it bluntly, the fastest way to trash your health. Among the health problems you invite with a high-fructose diet are:

  • Obesity, insulin resistance, metabolic syndrome and type 2 diabetes
  • Elevated triglycerides and LDL (bad) cholesterol levels
  • Elevated blood pressure
  • Liver disease
  • Depletion of vitamins and minerals—Unbound fructose, found in large quantities in HFCS, can interfere with your heart’s use of minerals such as magnesium, copper and chromium.
  • Cardiovascular disease, arthritis, gout, and cancer

Beware: Mixing Fructose with Glucose Increases Destructive Effect

Fructose consumption clearly causes insulin resistance whereas straight glucose does not. However, it’s worth knowing that glucose accelerates fructose absorption!  So when you mix glucose and fructose together, you absorb more fructose than if  you consumed fructose alone…

This is an important piece of information if you are struggling to control your weight. Remember, sucrose, or table sugar,  is exactly this blend — fructose plus glucose. So, the key to remember is to not get too nit-picky about the names of the sugars. ALL of these contribute to decreased health:

  • Sucrose (table sugar)
  • Corn syrup
  • High fructose corn syrup (HFCS)
  • Crystalline fructose, and any other high-fructose sweetener they may dream up
  • Natural fructose in the form of fruits, fruit juices, and natural sweeteners such as honey and agave.

Is Fructose from HFCS Worse than Fructose from Table Sugar?

High fructose corn syrup is about 55 percent fructose while table sugar is about 50 percent. The fructose in the corn syrup is also dissociated from the glucose, unlike table sugar which has it attached. So HFCS is clearly worse than table sugar, but not orders of
magnitude. It is only marginally worse.

The MAIN reason why fructose and HFCS are so bad is that in the mid 70s two things happened. Earl Butz changed the US Agriculture policy to massively subsidize corn production in the US, and scientists also figured out how to make HFCS in the lab from corn.  The combination of these two events made fructose VERY cheap. So cheap that it’s put in virtually all processed  foods because it is virtually free and massively improves the flavor of most foods. So if you are a processed food producer there are virtually no downsides. So it becomes a QUANTITY issue, and the average person is now consuming 600 percent more than their ancestors did, and some are consuming 1500 percent more. So the massive increase in this toxin is what is causing the problem. If table sugar was as cheap and used as much it would cause virtually identical side effects.

Fructose Metabolism Basics

Without getting into the very complex biochemistry of carbohydrate metabolism, it is important to understand how your body processes glucose versus fructose. Dr. Robert Lustig, Professor of Pediatrics in the Division of Endocrinology at the University of California, has been a pioneer in decoding sugar metabolism. His work has highlighted some major differences in how different sugars are broken down and used.

Here’s a summary of the main points:

  • After eating fructose, 100 percent of the metabolic burden rests on your liver. With glucose, your liver has to  break down only 20 percent.
  • Every cell in your body, including your brain, utilizes glucose. Therefore, much of it is “burned up” immediately after you consume it. By contrast, fructose is turned into free fatty acids (FFAs), VLDL (the damaging form of cholesterol), and triglycerides, which get stored as fat.
  • The fatty acids created during fructose metabolism accumulate as fat droplets in your liver and skeletal muscle tissues, causing insulin resistance and non-alcoholic fatty liver disease (NAFLD). Insulin resistance progresses to metabolic syndrome and type II diabetes.
  • Fructose is the most lipophilic carbohydrate. In other words, fructose converts to activated glycerol (g-3-p), which is directly used to turn FFAs into triglycerides. The more g-3-p you have, the more fat you store. Glucose does not do this.
  • When you eat 120 calories of glucose, less than one calorie is stored as fat. 120 calories of fructose results in 40 calories being stored as fat. Consuming fructose is essentially consuming fat!
  • The metabolism of fructose by your liver creates a long list of waste products and toxins, including a large amount of uric acid, which drives up blood pressure and causes gout.
  • Glucose suppresses the hunger hormone ghrelin and stimulates leptin, which suppresses your appetite. Fructose has no effect on ghrelin and interferes with your brain’s communication with leptin, resulting in overeating.

So, if anyone tries to tell you “sugar is sugar,” they are way behind the times. As you can see, there are major differences in how your body processes each one. The bottom line is: fructose leads to increased belly fat, insulin resistance and metabolic syndrome — not to mention the long list of chronic diseases that directly result.

If you, like so many others, have struggled with your weight for years; examined your diet; avoided fat and counted your calories, yet not getting anywhere and wondering what you’re doing wrong, please pay very close attention to this issue!

In many cases the primary culprit is an excessive intake of hidden sugar in the form of fructose, whether natural fructose (such as agave syrup or 100 percent fruit juice, for example), or in the form of corn syrup (or high fructose corn syrup), which is a main ingredient in countless beverages and processed, pre-packaged foods.  It’s extremely easy to consume high amounts of fructose on a daily basis, especially if most of your foods are processed in any way, or if you drink sodas or any other sweetened beverages  such as ice-teas, fruit juices and sports drinks. As previously discussed, even seemingly “health-conscious” beverages like Vitamin Water, Jamba Juice and Odwalla SuperFood contain far more added sugar and/or fructose than many desserts!  So please, understand that it’s not dietary fat that’s making you fat. It’s fructose.

Recommended Fructose Allowance

As a standard recommendation, keep your TOTAL fructose consumption below 25 grams per day.

For most people it would also be wise to limit your fructose from fruit to 15 grams or less, as you’re virtually guaranteed to
consume “hidden” sources of fructose if you drink beverages other than water and eat processed food. Remember, the average 12-ounce can of soda contains 40 grams of sugar, at least half of which is fructose, so one can of soda ALONE would exceed your  daily allotment.  Fifteen grams of fructose is not much — it represents two bananas, one-third cup of raisins, or two Medjool  dates. In his book, The Sugar Fix, Dr. Johnson includes detailed tables showing the content of fructose in different foods — an information base that isn’t readily available when you’re trying to find out exactly how much fructose is in various foods. We encourage you to pick up a copy of this excellent resource.

Here’s a quick reference list of some of the most common fruits that you can use to help you count your fructose grams:

Limes –                   1 medium = 0 grams
Lemons –                1 medium = 0.6 grams
Cranberries-           1 cup= 0.7 grams
Passion fruit-         1 medium = 0.9 grams
Prune –                     1 medium = 1.2 grams
Apricot –                  1 medium = 1.3 grams
Guava –                    2 medium = 2.2 grams
Date deglet            1 medium = 2.6 grams
Cantaloupe –          1/8 portion = 3.2 grams
Raspberries-         1 cup = 3.0 grams
Clementine –         1 medium = 3.6 grams
Kiwifruit –               1 medium = 3.6 grams
Blackberries –        1 cup = 3.5 grams
Star fruit –              1 medium = 3.6 grams
Cherries sweet –   10 total = 3.8 grams
Strawberries –       1 cup = 3.8 grams
Cherries sour –      1 cup = 4.0 grams
Pineapple –            1 slice = 4.0 grams
Grapefruit pink –  1 half =   4.3 grams
Boysenberries –     1 cup = 4.6 grams
Tangerine –            1 medium = 4.8 grams
Nectarine –             1 medium = 5.4 grams
Peach –                    1 medium = 5.9 grams
Orange navel –       1 medium = 6.1 grams
Papaya –                  1 half = 6.3 grams
Mellon honeydew –  1 eighth = 6.7 grams
Banana –                  1 medium = 7.1 grams
Blueberries –           1 cup = 7.4 grams
Date medjool –       1 medium = 7.7 grams
Apple –                     1 medium = 9.5 grams
Persimmon –           1 medium = 10.6 grams
Watermelon –         1 sixteenth = 11.3 grams
Pear –                       1 medium = 11.8 grams
Raisins –                  1 forth cup = 12.3 grams
Grapes seedless –   1 cup = 12.4 grams
Mango –                   1 half = 16.2 grams
Apricots dried –     1 cup = 16.4 grams
Figs dried –            1 cup = 23.0 grams 

The Way Toward Better Health…

There is nothing benign about the fructose consumption inherent in our modern diet. It is literally supercharged with fructose, and we’re seeing the consequences of this type of eating in our skyrocketing rates of obesity, diabetes, heart disease, and cases of non-fatty liver disease.  Fortunately, there’s plenty of good news here.

There IS a way out of this evil circle, and that is a return to a more holistic diet based on whole foods, along with physical exercise and safe sun exposure to optimize your vitamin D levels.  One of the easiest things you can do to quickly improve your health is to eliminate all soda and sweetened beverages from your life.   ALL soda, because even though HFCS is clearly something you want to avoid, it is still not as bad as artificial sweeteners,  which damage your health even more rapidly than HFCS.  Then, since most processed foods also contain HFCS, avoiding as many processed foods as possible is your next step.
If you want an occasional sweetener, consider:

  1. The herb stevia
  2. Dextrose (pure glucose)

Say no to agave syrup since it is a highly processed sap that is almost all fructose. It is one of the more seriously mismarketed foods in the natural food world. An informal study found the most popular agave brands ranged from 59 to 67 percent pure fructose, far worse than HFCS. Once you realize the hazards of fructose and begin to avoid it in earnest, your diet will significantly improve, which is an essential factor for a long, healthy life.

Reference:  Mercola.com

Sugar is poison to the human body? . . . Why?

anti-aging, Fitness, nutrition, Recovery - Repair | Posted by admin October 13th, 2010

Sugar’s toxic wrath is in part due to its composition as a purely refined carbohydrate.  It is a chemical.  Our bodies cannot utilize this poison because it has been stripped of all vitamins, minerals, and all other nutrients that help your body create optimum health. What occurs when sugar is ingested is a balancing act that takes place inside our bodies.

Because balance or homeostasis is so essential to our bodies, the minerals sodium, potassium, magnesium and calcium are utilized to create this balance.  For example, in order to neutralize the blood from sugar (sugar creates an acidic body), calcium is taken from the bones and teeth, thus, decay and osteoporosis may occur.  If sugar is consumed every day, our bodies eventually will be depleted of these very important minerals and lead to mineral deficiencies that depletes your health and weakens your defenses against disease. This process allows the generation of dreaded free-radicals to cause major damage.  

(Free-radicals lead to cell destruction and single nucleotide polymorphisms at replication during new body cell regeneration)

Excess sugar affects every single organ in the body – including the liver. The liver is where sugar is stored in the form of glycogen (glucose complex).  Eventually, if sugar is consumed every day, your liver will be unable to store the excess sugar and is returned to the blood in the form of fatty acids.  Guess where those fatty acids are stored?  They are stored in the most inactive areas: The belly, the buttocks, the breasts and the thighs.  After these areas have been filled-up, the fatty acids then get distributed to organs such as the heart and kidneys.

Sugar hinders the body’s immune system and predisposes people to illness and disease.  Our white blood cells are adversely affected. Here are just some health conditions associated with over-consumption of sugar: Obesity, cancer, aging, cardiovascular disease, high blood pressure, adult-onset type II diabetes, eczema, kidney stones, depression, Candida (yeast over-growth), anxiety, dental cavities, atherosclerosis, poor brain function and countless other conditions.

Cancer is affected by sugar due to the cancer cell’s main source of fuel:  Glucose. By controlling blood glucose, the cancer cells are starved for fuel and the immune system is bolstered.

We think of sugar as the granulated white stuff, but it can be disguised in many forms such as: corn syrup, fructose, sucrose, lactose, molasses, honey, maltose, fruit juice and many other forms. It is essential that we become aware of the hidden sources of sugar found in processed foods.  In order to achieve optimum health, it is essential to mindfully choose whole grains, fruits, vegetables, lower stress levels, exercise and avoid sugar as much as possible.

Reference: Lori L. Shemek, PhD, CNC, CLC has devoted the past 20 years, practicing and teaching others about the principles of nutrition. As an Author, Health Expert and Speaker, Dr. Shemek combines her background in Psychology with a lifetime of practicing natural and preventive wellness to create optimum health for her clients at every level of health. Dr. Shemek holds a Doctorate in Psychology, she is a Certified Nutritional Consultant, and a Certified Life Coach. Dr. Shemek is the Founder and President of DLS HealthWorks, LLC.  http://www.dlsHealthWorks.com

Water: How much needed for health & optimal athletic performance?

Fitness, nutrition, performance, Recovery - Repair | Posted by admin June 27th, 2010

Water is absolutely critical to our body which comprises about 75% water; the brain has 85%, blood 90%, lungs 90%, muscles 75%, kidney 82% and even bones has 22%.  Basically, we are made of water!

Water dissolves the many valuable nutrients, minerals, and chemicals in the biological processes and transports them to different parts of our body. The carbohydrates and proteins that our bodies use as food are metabolized and transported by water in the bloodstream. Water is just as important in the transport of waste and toxins out of our bodies. Without the replenishment of fresh water, our body will fail to function, start to waste away, and finally collapse. An adult loses about 2.5 liters water every day through perspiration, breathing, and elimination (urine and feces), and when the body loses 5% of its total water volume, symptoms of dehydration such as thirst, reduced mental concentration, blurred vision, muscle cramps, unexplained tiredness, irritation, dark urine, will begin to show up.

The consequence of consuming insufficient water can be devastating to our body. The cells will start to draw water from the bloodstream instead, causing the heart to work harder. At the same time, when the kidneys fail to cleanse the blood effectively due to inadequate water, the liver and other organs will have to work harder, putting them under extra stress. Continuous water loss over time will speed up aging but increase risks of diseases and health issues such as constipation, dry and itchy skin, acne, nosebleeds, urinary tract infection, coughs, sneezing, sinus pressure, and headaches.

So, how much water should you drink a day? How much water is enough for you? The minimum amount of water you need depends on our body weight. As a general guide, for two pounds of body weight, an ounce of water is required.  So, if you are 60kg (1 kg is 2.54 lbs), you should drink about 2 liters of water every day.

Specifics of Understanding:

  • Every day you lose water through your breath, perspiration, urine and bowel movements. For your body to function properly, you must replenish its water supply by consuming beverages and foods that contain water. Several approaches attempt to approximate water needs for the average, healthy adult living in a temperate climate.
  • Replacement approach.  The average urine output for adults is about 1.5 liters (6.3 cups) a day.  You lose close to an additional liter of water a day through breathing, sweating and bowel movements.  Food usually accounts for 20 percent of your total fluid intake, so if you consume 2 liters of water or other beverages a day (a little more than 8 cups) along with your normal diet, you will typically replace the lost fluids.
  • Eight 8-ounce glasses of water a day.  Another approach to water intake is the “8 x 8 rule” — drink eight 8-ounce glasses of water a day (about 1.9 liters). The rule could also be stated, “drink eight 8-ounce glasses of fluid a day,” as all fluids count toward the daily total.  Though the approach isn’t supported by scientific evidence, many people use this basic rule as a guideline for how much water and other fluids to drink.
  • Dietary recommendations. The Institute of Medicine advises that men consume roughly 3 liters (about 13 cups) of total beverages a day and women consume 2.2 liters (about 9 cups) of total beverages a day. Even apart from the above approaches, if you drink enough fluid so that you rarely feel thirsty and produce 1.5 liters (6.3 cups) or more of colorless or slightly yellow urine a day, your fluid intake is probably adequate. Factors that influence water needs: You may need to modify your total fluid intake depending on how active you are, the climate you live in, your health status, and if you’re pregnant or breast-feeding.
  • Exercise. If you exercise or engage in any activity that makes you sweat, you need to drink extra water to compensate for the fluid loss. An extra 400 to 600 milliliters (about 1.5 to 2.5 cups) of water should suffice for short bouts of exercise, but intense exercise lasting more than an hour (for example, running a marathon) requires more fluid intake. How much additional fluid you need depends on how much you sweat during exercise, the duration of your exercise and the type of activity you’re engaged in? During long bouts of intense exercise, it’s best to use a sports drink that contains sodium, as this will help replace sodium lost in sweat and reduce the chances of developing hyponatremia, which can be life-threatening. Also, continue to replace fluids after you’re finished exercising.
  • Environment. Hot or humid weather will make you sweat and requires additional intake of fluid. Heated indoor air also can cause your skin to lose moisture during wintertime. Further, altitudes greater than 8,200 feet (2,500 meters) may trigger increased urination and more rapid breathing, which use up more of your fluid reserves.
  • Illnesses or health conditions. Signs of illnesses, such as fever, vomiting and diarrhea, cause your body to lose additional fluids. In these cases you should drink more water and may even need oral rehydration solutions, such as Gatorade or Poweraid supplements.  Also, you may need increased fluid intake if you develop certain conditions, including bladder infections or urinary tract stones. On the other hand, some conditions such as heart failure and some types of kidney, liver and adrenal diseases may impair excretion of water and even require that you limit your fluid intake.
  • Pregnancy or breast-feeding. Women who are expecting or breast-feeding need additional fluids to stay hydrated. Large amounts of fluid are used especially when nursing. The Institute of Medicine recommends that pregnant women drink 2.3 liters (about 10 cups) of fluids daily and women who breast-feed consume 3.1 liters (about 13 cups) of fluids a day.
  • Other sources.  Although it’s a great idea to keep water within reach at all times, you don’t need to rely only on what you drink to satisfy your fluid needs. What you eat also provides a significant portion of your fluid needs. On average, food provides about 20 percent of total water intake, while the remaining 80 percent comes from water and beverages of all kinds. For example: many fruits and vegetables, such as watermelon and tomatoes, are 90 percent to 100 percent water by weight. Beverages such as milk and juice also are composed mostly of water. Even beer, wine and caffeinated beverages — such as coffee, tea or soda — can contribute, but these should not be a major portion of your daily total fluid intake. Water is one of your best hydration source because it’s calorie-free, inexpensive and naturally available.
  • When to hydrate?   It’s generally not a good idea to use thirst alone as a guide for when to drink. By the time you become thirsty, it’s possible to already be slightly dehydrated. Further, be aware that as you get older your body is less able to sense dehydration and send your brain signals of thirst. Excessive thirst and increased urination can be signs of a more serious medical condition. Talk to your doctor if you experience either. To ward off dehydration and make sure your body has the fluids it needs, make water your beverage of choice. Nearly every healthy adult can consider the following: Drink a glass of water with each meal and between each meal. Hydrate before, during and after exercise. Substitute sparkling water for alcoholic drinks at social gatherings. If you drink water from a bottle, thoroughly clean or replace the bottle often to avoid disease and infections.

 

Drinking too much water?

  • Though uncommon, it is possible to drink too much water. When your kidneys are unable to excrete the excess water, the electrolyte (mineral) content of the blood is diluted, resulting in low sodium levels in the blood, a condition called hyponatremia. Endurance athletes, such as marathon runners, who drink large amounts of water, are at higher risk of hyponatremia. In general, though, drinking too much water is rare in healthy adults who consume an average American diet. If you’re concerned about your fluid intake, check with your doctor or a registered dietitian. He or she can help you determine the amount of water that’s best for you.

 

Staying safely hydrated

Resources:  The Mayo Clinic &
Ruth Tan, Health & Nutritional Analyst

Vitamin D – Its Role in Health & Optimal Athletic Performance

Fitness, nutrition, performance, Recovery - Repair | Posted by admin May 24th, 2010

There are a pandemic number of people who are vitamin D deficient.  This has become evident due to increased discovery and sharing of documentation from clinical trials, epidemiological studies, and educational journals.  The end results from an alarming and growing number due to lack of sunshine exposure and inadequate supply of vitamin D from daily food intake.   This added to obesity trends, an aging population, and improved skin products that block formation of vitamin D3.  Until recently, vitamin D was understood to be solely related to bone mineralization and calcium utilization in the body.   Further studies have revealed vitamin D to play a leading role in many additional cell processes.  More than 36 cell types and 10 extra renal organs have been discovered to possess the vitamin D receptor, or VDR. Insufficient vitamin D is related to reduced immunological conditions, cancers of the breast, colon, pancreas, and prostate as well as heart diseases, type I diabetes, rheumatoid arthritis, cognitive impairment, and all cause mortality.  This impressive collection of medical conditions accounts for more than 60% of all deaths in the Western World.

What is Vitamin D?

A fat soluble pro-hormone, vitamin D is a seco-steroid which exists in two forms:  vitamin D2 & vitamin D3.  Vitamin D2 is obtained from yeast and plant material, vitamin D3 is produced endogenously in the skin by the photo-chemical conversion of 7-dehydrocholesterol. Vitamin D circulates in the body bound to the vitamin D binding protein, or VDBP.  Both vitamin D2 and D3 are converted to the biomarker 25-hydoxyvitamin [D (25(OH)D] in the liver and undergoes further hydroxylation in the kidneys to the bio-active form of the hormone 1,25(OH)2D.

The Frequency of vitamin D Deficiency:

The March 2010 issue of the Journal of Clinical Endocrinology & Metabolism points towards an overwhelming 59% of people that are vitamin D insufficient.  This was based on a cross-sectional study designed to establish a relationship between serum 25(OH)D and the degree of fat penetration in muscle.  These results have been duplicated as well in several independent studies of people from all over the United States in recent months.

Adverse Outcomes of Vitamin D Insufficiency:

Presence of 1,25(OH)2D and vitamin D receptors (VDR) in a wide variety of tissues ranging from pancreas, colon, brain, liver, muscle, skin and lung  speaks of its newly found broad involvement in the functionality of bodily systems.  Published literature over several years indicates that the non-bone mineralization effects of vitamin D are autocrine, not endocrine.  Thus, implying these functions are not based or derived for the amount of circulating 1,25(OH)2D in the body, but rather due to the intracellular synthesis of 1,25(OH)2D by these tissues.  Studies also indicate that the levels of 1,25(OH)2D required for these non-calcemic functions are higher than the levels of normal serum 1,25(OH)2D. 

Epidemiological evidences have linked deprived levels of vitamin D conditions to osteoporosis, osteoarthritis, obesity, multiple sclerosis, hypertension, type I diabetes and several cancers.  Vitamin is also effective in maintaining low susceptibility to infections including pulmonary diseases.

Conclusion:

Vitamin D has been shown to have an extensive area of biological influence due to the discovery of VDR and its conversion in several body tissues.  Health, strength and athletic performance can be optimized by measuring the residual levels of vitamin D at the cellular level to determine the degree of insufficiencies in order to adjust diets and nutritional supplements which directly influences athletic strength and recovery time.

Contact us for information on measuring residual vitamins & minerals by functional intracellular analysis at the cellular level – which is directly proportional to the body stores . . .

Reference:  Ray J, Meike W. D-Light: Vitamin D and Good Health. MLO. 2010;42(5):32-38

Manipulating The Glycemic Index Diet – The Winning Edge ???

Fitness, nutrition, performance, Recovery - Repair, strength | Posted by admin November 4th, 2009

A high-carbohydrate training diet is a must for optimum sports performance because it produces the biggest stores of muscle glycogen. Unlike the fat stores in the body, which can release almost unlimited amounts of fatty acids, the carbohydrate stores are small. They are fully depleted after two or three hours of strenuous exercise. This depletion of carbohydrate stores is called “hitting the wall.” The blood glucose concentration begins to decline at this point. If exercise continues as the same rate, blood glucose may drop to levels that interfere with brain function and cause disorientation and unconsciousness.

All else being equal, the eventual winner is the person with the largest stores of muscle glycogen. It is important to maximize your muscle glycogen stores by ingesting a high-carbohydrate training diet and by carb loading in the days prior to the competition.

There are times when low G.I. foods provide an advantage and times when high G.I. are better. For best performance a serious athlete needs to learn which foods have high and low G.I. factors and when to eat them. Understanding the glycemic index and making the best food choices can give you an advantage.

Low-GI Foods: Before the Event
Low-GI foods have been proven to extend endurance when eaten alone one or two hours before prolonged strenuous exercise. Low-GI foods are best eaten about two hours before the big event –so that the meal will have left the stomach but will remain in the small intestine, slowly releasing glucose energy, for hours afterwards. The slow rate and steady stream of glucose trickles into the bloodstream during the event. Most importantly, the extra glucose will still be available toward the end of the exercise, when muscle stores are running close to empty. In this way, low-GI foods increase endurance and prolong the time before exhaustion hits.

When a pre-event meal of lentils (low GI value) was compared with one of potatoes (high GI value), cyclists were able to continue cycling at high intensity (65 percent of their maximum capacity) for twenty minutes longer when the meal had a low G value. Their blood-glucose and insulin levels were still above fasting levels at the end of exercise, indicating that carbohydrates were continuing to be absorbed from the small intestine even after ninety minutes of strenuous exercise.

In any sport context, it’s critical to select low-GI foods that do not cause gastrointestinal discomfort (stomach cramps, etc.). Some low-GI foods, such as legumes that are high in fiber or ingestible sugars, may produce symptoms in people not use to eating large amounts of them. There are plenty of low-fiber, low-GI choices, including pasta, noodles, and Basmati rice.

High- GI Foods: During and After the Event
While the pre-event meal should have a low GI value, scientific evidence indicates that there are times when high-GI foods are preferable. This includes during the event, after the event, and after normal training sessions. This is because high-GI foods are absorbed faster and stimulate more insulin, the hormone responsible for getting glucose back into the muscles for either immediate or future use.

During the event
High-GI foods should be used during events lasting longer than ninety minutes. This form of carbohydrate is rapidly released into the bloodstream and ensures that glucose is available for oxidation in the muscle cells. Liquid foods are usually tolerated better than solid foods, for endurance racing for example, because they are emptied more quickly from the stomach. Sports drinks are ideal during the race because they replace water and electrolytes as well. If you feel hungry for something solid during a race, try jelly beans (GI value of 80) or another form of high-glucose candy. Consume 30 to 60 grams of carbohydrate per hour during the event.

After the event (recovery)
In some competitive sports, athletes compete on consecutive days, and glycogen stores need to be at their maximum each time. Here it is important to restock the glycogen store in the muscles as quickly as possible after each day’s events. High-GI foods are best in this situation. Muscles are more sensitive to glucose in the bloodstream in the first hour after exercise, so a concerted effort should be made to get as many high-GI foods in as soon as possible.

Suggested foods include most of the sports drinks which replace water and electrolyte losses, or high-GI rice (e.g., jasmine), breads, and breakfast cereals such as cornflakes or rice krispies. Potatoes cooked without fat are good choice too but their high satiety means it is hard to eat lots of them.

Carbohydrate Loading For Training & Understanding
Why This Is Important…

It’s not just your pre- and post-event meals that influence your performance. Very active people need to eat much larger amounts of carbohydrates than inactive people. Consuming a high-carbohydrate diet every day will help you reach peak performance. When athletes fail to consume adequate carbohydrates each day, muscle and liver glycogen stores eventually become depleted. Dr. Ted Costill at the University of Texas showed that the gradual and chronic depletion of stored glycogen may decrease endurance and exercise performance. Intense workouts two to three times a day draw heavily on the athlete’s muscle glycogen stores. Athletes on low-carbohydrate diet will not perform their best because muscle stores of fuel are low.
If the diet provides inadequate amounts of carbohydrate, the reduction in muscle glycogen will be critical. An athlete training heavily should consume about 500 to 800 grams of carbohydrate a day (about two to three times normal) to help prevent carbohydrate depletion. Typically, American adults consume between 200 to 250 grams of carbohydrates each day.

Could a High-GI Diet Be Harmful to Athletes?

By virtue of their high activity levels, athletes have optimal insulin sensitivity. When they eat high-carbohydrate, high-GI foods, blood glucose and insulin levels rise far less in them than in the average person. This also provides the athlete with a bonus by not exposing their bodies to dangerous levels of blood glucose which produce disease in sedentary, insulin resistant individuals.

Adapted from the Book: The New Glucose Revolution
Written by: Jennie Brand-Miller, PhD
Thomas M.S. Wolever, MD PhD
Stephen Colagiuri, MD
Kaye Foster-Powell, M Nutr & Diet

Leptin: How Diabetes & Obesity Are Linked –

Fitness, nutrition | Posted by admin July 5th, 2009

Like two peas in a pod, the obesity and type 2 diabetes epidemics have joined forces in an attempt to ravage America’s health … and it’s working, as hundreds of millions of people have been significantly affected by this deadly pair.

But how are these two epidemics intertwined? Popular belief is that if one eats too much sugar, they’ll get fat and develop diabetes; and, if they don’t get diabetes it’s merely because their body is producing enough insulin to keep up with the sugar. However, researchers have discovered evidence that there’s more to the obesity-diabetes connection than this classic way of thinking: The missing link? Leptin.

Leptin is the way that your fat stores speak to your brain to let your brain know how much energy is available and, very importantly, what to do with it. Studies have shown that leptin plays significant if not primary roles in heart disease, obesity, diabetes, osteoporosis, autoimmune diseases, reproductive disorders, and perhaps the rate of aging itself. Many chronic diseases are now linked to excess inflammation such as heart disease and diabetes. High leptin levels are very pro-inflammatory, and leptin also helps to mediate the manufacture of other very potent inflammatory chemicals from fat cells that also play a significant role in the progression of heart disease and diabetes.

Leptin: A Key Player in Your Health

Leptin plays a far more important role in your health than, for instance, cholesterol, however few doctors are taught to pay attention to it, or even know much about it. Leptin’s critical importance is largely unknown to the medical community because there are no known drugs that regulate its activities and therefore there is no incentive to spend money to educate doctors about leptin’s crucial role in health and disease. The only known way to reestablish proper leptin (and insulin) signaling is via diet and, as such, these can have a more profound effect on your health than any other
known modality of medical treatment. New studies support prior studies that have shown the brain and liver to be of paramount importance in regulating your blood sugar levels especially in type 2 or insulin resistant diabetes. It had been previously believed that the insulin sensitivity of muscle and fat tissues were the most important factor in determining whether one would become diabetic or not. It should be noted that leptin plays a vital role in regulating your brain’s hypothalamic activity which in turn regulates much of our “autonomic” functions; those functions that you don’t necessarily think about but which determines much of your life (and health) such as:

•Body temperature
•Heart rate
•Hunger
•Stress response
•Fat burning or storage
•Reproductive behavior and
•Newly discovered roles in bone growth and blood sugar levels

These studies also illustrate the complexity of hormonal orchestration. Especially with very important hormones like insulin and leptin with far ranging effects, a particular cell can be resistant to one effect while the other stays intact. For instance, it had been shown previously that cells may become resistant to the effects of insulin on glucose influx (which may be protective in limiting the amount of glucose entering cells and thus intracellular glycation), while that same cell may not become resistant to the effects of insulin on cellular proliferation that tell cells to multiply, as these are mediated by two separate pathways. Thus a person with high insulin levels, being insulin resistant in regards to glucose, would still be at a much higher risk of cancer, and this indeed is what happens; high insulin levels are associated with many common forms of cancer. Also, different organ systems become resistant at different rates. Therefore, just taking or artificially raising (by drugs) insulin, and/or leptin, will not correct the problems in the orchestration of the signals, any more than playing the tuba louder will fix mistakes in the written music. However a strategic diet that emphasizes good fats and avoids blood sugar spikes coupled with targeted supplements to enhance insulin and leptin sensitivity by resensitizing your cell’s ability to hear hormonal messages correctly, will allow your life to be the symphony it was meant to be.

REf: Dr.Ron Rosedale

Cell Metabolism March 2005; Vol 1, 169-178 (Free Full-Text Article)

Leptin & Insulin – Vital Hormones for Optimal Health . . .

nutrition | Posted by admin June 22nd, 2009

Each and every one of us is a combination of lives within lives. We are made up of trillions of individual living cells that each must maintain itself. Even more significantly, the cells must communicate and interact with each other to form a republic of cells that we call our individual self. Our health and life depends on how accurately instructions are conveyed to our cells so that they can act in harmony. It is the communication among the individual cells that will determine our health and our life. The communication takes place by hormones. Arguably therefore, the most important molecules in your body that ultimately will decide your health and life are hormones.

Many would say that genes and chromosomes are the most important molecules, however once born your genes pretty much just sit there; hormones tell them what to do. Certainly, the most important message that our cells receive is how and what to do with energy, and therefore life cannot take place without that.

The two most important hormones that deliver messages about energy and metabolism are insulin and leptin.

Metabolism can roughly be defined as the chemistry that turns food into life, and therefore insulin and leptin are critical to health and disease. Both insulin and leptin work together to control the quality of your metabolism (and, to a significant extent, the rate of metabolism).

Insulin works mostly at the individual cell level, telling the vast majority of cells whether to burn or store fat or sugar and whether to utilize that energy for maintenance and repair or reproduction. This is extremely important for on an individual cell level turning on maintenance and repair equates to increased longevity, and turning up cellular reproduction can increase your risk of cancer.

Leptin, on the other hand, controls the energy storage and utilization of the entire republic of cells allowing the body to communicate with the brain about how much energy (fat) the republic has stored, and whether it needs more, or should burn some off, and whether it is an advantageous time nutritionally-speaking for the republic –you– to reproduce or not.

Leptin is a very powerful and influential hormone produced by fat cells. Prior to leptin’s discovery, fat was viewed as strictly an ugly energy storage depot that most everyone was trying to get rid of. After it was discovered that fat produced the hormone leptin (and subsequently it was discovered that fat produced other very significant hormones), fat became an endocrine organ like the ovaries, pancreas and pituitary, influencing the rest of the body and, in particular, the brain.

Leptin, as far as science currently knows, is the most powerful regulator that tells your brain what to do about life’s two main biological goals: eating and reproduction. Your fat, by way of leptin, tells your brain whether you should be hungry, eat and make more fat, whether you should reproduce and even make babies, or (partly by controlling insulin) whether to “hunker down” and work overtime to maintain and repair yourself. In short, leptin is the way that your fat stores speak to your brain to let your brain know how much energy is available and, very importantly, what to do with it. Therefore, leptin may be “on top of the food chain” in metabolic importance and relevance to disease.

It has been known for many years that fat stores are highly regulated. It appeared that when one tried to lose weight the body would try to gain it back. This commonly results in “yo-yo” dieting and in scientific circles one talks about the “set point” of weight. It has long been theorized that there must be a hormone that determines this.

Science points now to leptin as being that hormone.

If a person is getting too fat, the extra fat produces more leptin which is supposed to tell the brain that there is too much fat stored, more should not be stored, and the excess should be burned.

Signals are therefore sent to an area of the brain in the hypothalamus (the arcuate nucleus) to stop being hungry, to stop eating, to stop storing fat and to start burning some extra fat off.

The importance of insulin in health and disease is becoming well-known. Aside from its obvious role in diabetes, it plays a very significant role in hypertension, cardiovascular disease, and cancer.

However leptin may even supersede insulin in importance, for new research is revealing that in the long run glucose and therefore insulin levels may be largely determined by leptin.

It had been previously believed that the insulin sensitivity of muscle and fat tissues were the most important factor in determining whether one would become diabetic or not. Elegant new studies are showing that the brain and liver are most important in regulating a person’s blood sugar levels especially in type 2 or insulin resistant diabetes.

People become leptin-resistant by the same general mechanism that people become insulin-resistant; by overexposure to high levels of the hormone. High blood glucose levels cause repeated surges in insulin, and this causes one’s cells to become “insulin-resistant” which leads to further high levels of insulin and diabetes. It is much the same as being in a smelly room for a period of time. Soon, you stop being able to smell it, because the signal no longer gets through. This is the same happens with leptin. It has been shown that as sugar gets metabolized in fat cells, fat releases surges in leptin, and those surges result in leptin-resistance just as it results in insulin-resistance.

The only known way to reestablish proper leptin (and insulin) signaling is to prevent those surges, and the only known way to do that is via diet and supplements. When leptin signaling is restored, your brain can finally hear the message that perhaps should have been delivered decades ago; high leptin levels can now scream to your brain that you have too much fat and that you better start burning some off for your life is in danger. Your brain will finally allow you access into your pantry that you have been storing your fat in. Your cells will be fed the food from that fat and they will be satisfied. They will not know whether that food came from your belly fat or from your mouth; nor will they care. They will be receiving energy that they need and will not have to ask for more. You will not be hungry.

This also makes counting calories irrelevant, for the calories that you put into your mouth today are not necessarily what your cells will be eating; that will be determined primarily by leptin. Whether or not you put food into your mouth, your cells will be eating, and if they cannot eat fat they must eat sugar. Since little sugar is stored, that sugar will be had by making you crave it, or by turning the protein in your muscle and bone into sugar. This contributes in a major way to weakness and osteoporosis. Whether or not this lean tissue wasting happens is determined by your capacity, or incapacity, to burn fat, and that is determined by your ability to listen to leptin.

When you become leptin-resistant, your body can no longer hear the messages telling it to stop eating and burn fat — so it remains hungry and stores more fat.

Leptin-resistance also causes an increase in visceral fat, sending you on a vicious cycle of hunger, fat storage and an increased risk of heart disease, diabetes, metabolic syndrome and more.

People become both insulin and leptin resistant by eating the typical
American diet full of sugar,refined grains,processed foods and not a whole lot else. The solution is to instead eat a diet that emphasizes good fats and avoids blood sugar spikes — in short a dietary program detailed which emphasizes healthy fats, lean meats and vegetables, and restricts sugar and grains.

Ref: Ron Rosedale, M.D.