Posts Tagged ‘hormones’

Inflammation – degrades health at the cellular level

anti-aging, disease, Fitness, Free Radicals, nutrition, performance, Recovery - Repair | Posted by admin May 25th, 2012

Inflammation is central to the body’s ability to defend, maintain and repair itself. Its symptoms appear as redness, heat, swelling and pain, announcing a part of the body that is inflamed.  Heat and redness are signs of blood rushing to the injured area. Swelling is from changes in the small blood vessels that allow plasma to seep into the tissues. Pain results from the release of compounds used by the immune system to draw defensive support to the injured area. The inflammatory response is regulated by hormones which both intensify and dampen the response.  Unchecked inflammation, or chronic inflammation, is abnormal, and occurs upon an imbalance of these hormones which inhibits the ability to turn off the defensive action when healing is complete.

Chronic inflammation extends beyond the location of the original injury, and spreads to areas of the body which are healthy. It is at the cellular level that chronic inflammation begins and is most often due to oxidative stress, brought on by the burning of energy in our bodies along with toxic elements in our environment. Toxins in the form of free radicals build up over time in our bodies, from both external and internal sources (internally, the consumption of fuel by our cells). These free radicals cause an inflammatory reaction at the cellular level, becoming chronic over time.

It is becoming widely known that this inflammation at the cellular level is at the root of over 200 common degenerative, chronic diseases.  A broad category of inflammation related disease is autoimmunity. These diseases include Type I Diabetes, Rheumatoid arthritis, asthma, eczema, coronary heart disease, Alzheimer’s, Parkinson’s, ALS, and even cancer.

There is also mounting evidence of a critical role of inflammation in the development of hypertension. Metabolic syndrome, marked by increased levels of C-reactive protein, is associated the inflammatory response, and a known precursor to high blood pressure, and an increased risk of heart attack and stroke.

Oxidative stress promotes the inflammatory response because the body sees the oxidation of cells as injury, and where excessive oxidative stress exists, inflammation begins to cause the body’s immune system to attack otherwise healthy cells.

Inflammation can be avoided by choices in the diet.

The macronutrients (fats, carbohydrates, and proteins) and micronutrients (vitamins, minerals, enzymes and phytonutrients) we consume have a direct role in maintaining a healthy inflammatory response.

Macronutrients:

Fats:
We all know about the bad fats (the saturated fats) and the good fats (polyunsaturated and monounsaturated fats). The saturated fats will have a more pro-inflammatory response in our bodies. Some fats are extremely pro-inflammatory. These are the artificially hardened fats: margarine, vegetable shortening, and partially hydrogenated vegetable oils. These products include oxidized fatty acids and trans fats. Balancing essential fatty acids (EFAs) is critical in maintaining the body’s ability to temper the inflammatory response. In general, the hormones synthesized from omega-6 fatty acids, which are abundant in our SAD (Standard American Diet) increase inflammatory reaction, while the hormones we create from omega-3 fatty acids have the dampening effect on this response. In the distant past our diets consisted of a more equivalent amount of these fats, but are now heavily weighted in the omega-6 fats. Unfortunately, omega-3’s are much harder to come by than omega-6’s. They are found in low concentrations in leafy greens, a few seeds and nuts (pumpkin seeds, walnuts, flax, hemp) and a few vegetable oils (soy, canola), sea vegetables, and oily fish from cold waters (salmon, sardines herring, mackerel, black cod, and bluefish). Animals that are allowed to graze on grass rather than being fattened on grains accumulate omega-3s in their fat. Oxidized fatty acids occur when oils are exposed to air, light and heat. Rancidity is a sign of oxidation; if your oil smells at all funny, toss it! This includes nuts and seeds, which do not have a long shelf life. The omega-3’s in these foods break down with oxidation, and as with oils, dispose of them when they begin to smell the least bit rancid. Refrigeration can extend their shelf life.

Carbohydrates:

As with the fats, our sources of carbohydrates can be pro-inflammatory. The glycemic index and glycemic load are indicators of the oxidative stress that will occur as a result of ingesting certain foods.  As you eat more high-GI foods, such as bread, white potatoes, white pasta, sugars, chips, crackers and snack foods, your body processes these foods as simple sugars. It burns these sugars very rapidly, causing excessive oxidation which results in an inflammatory response. Eat foods with a low-GI such as whole grains, beans, sweet potatoes, winter squashes and other vegetables, temperate fruits (berries, cherries, apples and pears) and less refined or processed food. Eating these foods will avoid inflammation, as the body will process these foods in a more regulated manner.

Proteins:
The influence of proteins on inflammation is not as direct, but are more a result of their fat and carbohydrates. Animal fats are more commonly saturated, while they also come with greater environmental contamination than plant foods.  Toxins from this environmental contamination cause inflammatory response from the resulting oxidative stress. Vegetable sources of proteins include soy and other legumes. These sources of protein are no less nutritious than meat protein but limit and even aid in controlling chronic inflammation.  Fish is highly recommended in favor of meat for its omega-3 fatty acids, but it is desirable to avoid some fish, such as tuna or shark, for their levels of mercury and PCBs. Good choices are wild Alaskan salmon, Alaskan black code (sablefish or butterfish), and sardines.

If fish oil supplements are taken, they should be distilled and toxin free, and not from farmed fish as they will contain no omega-3s which are derived from plankton and other natural sources not available to farm fish.  If you are taking EFA supplements, try to find those which have parental rather than derived fatty acids, and contain the correct balance.

Micronutrients:

Vitamins, minerals, enzymes, and phytonutrients are obtained for the most part from fruits and vegetables. We are told by the FDA that we should consume from 5-9 servings of fruit per day (1 cup of raw or 1/2 cup of cooked is considered one serving).

However it is not recommended that variety and raw foods are extremely important considerations. But it is well known that these nutrients are critical in reducing oxydative stress and related inflammation.

Phytonutrients are indicated by the colors of fruit and vegetables. There are tens of thousands of known phytonutrients, and more are being studied every day.  For example, the phytonutrients creating the red, blue, and purple in fruits and vegetables contain anthocyanins, which are water soluble. Anthocyanins are part of a larger subgroup of plant compounds called flavanoids, which are a subclass of plant polyphenols.  Plant polyphenols are known to have significant antioxidant capabilities, and so in turn, limit inflammatory response. Plant polyphenols have been studied for some time now for their role in protecting cells against cancerous conditions.

Reference:  Nutrition-To-Wellness
Nutrition and Health Blog, Discover Wellness, by Vicky Berry

Sugar is poison to the human body? . . . Why?

anti-aging, Fitness, nutrition, Recovery - Repair | Posted by admin October 13th, 2010

Sugar’s toxic wrath is in part due to its composition as a purely refined carbohydrate.  It is a chemical.  Our bodies cannot utilize this poison because it has been stripped of all vitamins, minerals, and all other nutrients that help your body create optimum health. What occurs when sugar is ingested is a balancing act that takes place inside our bodies.

Because balance or homeostasis is so essential to our bodies, the minerals sodium, potassium, magnesium and calcium are utilized to create this balance.  For example, in order to neutralize the blood from sugar (sugar creates an acidic body), calcium is taken from the bones and teeth, thus, decay and osteoporosis may occur.  If sugar is consumed every day, our bodies eventually will be depleted of these very important minerals and lead to mineral deficiencies that depletes your health and weakens your defenses against disease. This process allows the generation of dreaded free-radicals to cause major damage.  

(Free-radicals lead to cell destruction and single nucleotide polymorphisms at replication during new body cell regeneration)

Excess sugar affects every single organ in the body – including the liver. The liver is where sugar is stored in the form of glycogen (glucose complex).  Eventually, if sugar is consumed every day, your liver will be unable to store the excess sugar and is returned to the blood in the form of fatty acids.  Guess where those fatty acids are stored?  They are stored in the most inactive areas: The belly, the buttocks, the breasts and the thighs.  After these areas have been filled-up, the fatty acids then get distributed to organs such as the heart and kidneys.

Sugar hinders the body’s immune system and predisposes people to illness and disease.  Our white blood cells are adversely affected. Here are just some health conditions associated with over-consumption of sugar: Obesity, cancer, aging, cardiovascular disease, high blood pressure, adult-onset type II diabetes, eczema, kidney stones, depression, Candida (yeast over-growth), anxiety, dental cavities, atherosclerosis, poor brain function and countless other conditions.

Cancer is affected by sugar due to the cancer cell’s main source of fuel:  Glucose. By controlling blood glucose, the cancer cells are starved for fuel and the immune system is bolstered.

We think of sugar as the granulated white stuff, but it can be disguised in many forms such as: corn syrup, fructose, sucrose, lactose, molasses, honey, maltose, fruit juice and many other forms. It is essential that we become aware of the hidden sources of sugar found in processed foods.  In order to achieve optimum health, it is essential to mindfully choose whole grains, fruits, vegetables, lower stress levels, exercise and avoid sugar as much as possible.

Reference: Lori L. Shemek, PhD, CNC, CLC has devoted the past 20 years, practicing and teaching others about the principles of nutrition. As an Author, Health Expert and Speaker, Dr. Shemek combines her background in Psychology with a lifetime of practicing natural and preventive wellness to create optimum health for her clients at every level of health. Dr. Shemek holds a Doctorate in Psychology, she is a Certified Nutritional Consultant, and a Certified Life Coach. Dr. Shemek is the Founder and President of DLS HealthWorks, LLC.  http://www.dlsHealthWorks.com

Vitamin D – Its Role in Health & Optimal Athletic Performance

Fitness, nutrition, performance, Recovery - Repair | Posted by admin May 24th, 2010

There are a pandemic number of people who are vitamin D deficient.  This has become evident due to increased discovery and sharing of documentation from clinical trials, epidemiological studies, and educational journals.  The end results from an alarming and growing number due to lack of sunshine exposure and inadequate supply of vitamin D from daily food intake.   This added to obesity trends, an aging population, and improved skin products that block formation of vitamin D3.  Until recently, vitamin D was understood to be solely related to bone mineralization and calcium utilization in the body.   Further studies have revealed vitamin D to play a leading role in many additional cell processes.  More than 36 cell types and 10 extra renal organs have been discovered to possess the vitamin D receptor, or VDR. Insufficient vitamin D is related to reduced immunological conditions, cancers of the breast, colon, pancreas, and prostate as well as heart diseases, type I diabetes, rheumatoid arthritis, cognitive impairment, and all cause mortality.  This impressive collection of medical conditions accounts for more than 60% of all deaths in the Western World.

What is Vitamin D?

A fat soluble pro-hormone, vitamin D is a seco-steroid which exists in two forms:  vitamin D2 & vitamin D3.  Vitamin D2 is obtained from yeast and plant material, vitamin D3 is produced endogenously in the skin by the photo-chemical conversion of 7-dehydrocholesterol. Vitamin D circulates in the body bound to the vitamin D binding protein, or VDBP.  Both vitamin D2 and D3 are converted to the biomarker 25-hydoxyvitamin [D (25(OH)D] in the liver and undergoes further hydroxylation in the kidneys to the bio-active form of the hormone 1,25(OH)2D.

The Frequency of vitamin D Deficiency:

The March 2010 issue of the Journal of Clinical Endocrinology & Metabolism points towards an overwhelming 59% of people that are vitamin D insufficient.  This was based on a cross-sectional study designed to establish a relationship between serum 25(OH)D and the degree of fat penetration in muscle.  These results have been duplicated as well in several independent studies of people from all over the United States in recent months.

Adverse Outcomes of Vitamin D Insufficiency:

Presence of 1,25(OH)2D and vitamin D receptors (VDR) in a wide variety of tissues ranging from pancreas, colon, brain, liver, muscle, skin and lung  speaks of its newly found broad involvement in the functionality of bodily systems.  Published literature over several years indicates that the non-bone mineralization effects of vitamin D are autocrine, not endocrine.  Thus, implying these functions are not based or derived for the amount of circulating 1,25(OH)2D in the body, but rather due to the intracellular synthesis of 1,25(OH)2D by these tissues.  Studies also indicate that the levels of 1,25(OH)2D required for these non-calcemic functions are higher than the levels of normal serum 1,25(OH)2D. 

Epidemiological evidences have linked deprived levels of vitamin D conditions to osteoporosis, osteoarthritis, obesity, multiple sclerosis, hypertension, type I diabetes and several cancers.  Vitamin is also effective in maintaining low susceptibility to infections including pulmonary diseases.

Conclusion:

Vitamin D has been shown to have an extensive area of biological influence due to the discovery of VDR and its conversion in several body tissues.  Health, strength and athletic performance can be optimized by measuring the residual levels of vitamin D at the cellular level to determine the degree of insufficiencies in order to adjust diets and nutritional supplements which directly influences athletic strength and recovery time.

Contact us for information on measuring residual vitamins & minerals by functional intracellular analysis at the cellular level – which is directly proportional to the body stores . . .

Reference:  Ray J, Meike W. D-Light: Vitamin D and Good Health. MLO. 2010;42(5):32-38

Leptin & Insulin – Vital Hormones for Optimal Health . . .

nutrition | Posted by admin June 22nd, 2009

Each and every one of us is a combination of lives within lives. We are made up of trillions of individual living cells that each must maintain itself. Even more significantly, the cells must communicate and interact with each other to form a republic of cells that we call our individual self. Our health and life depends on how accurately instructions are conveyed to our cells so that they can act in harmony. It is the communication among the individual cells that will determine our health and our life. The communication takes place by hormones. Arguably therefore, the most important molecules in your body that ultimately will decide your health and life are hormones.

Many would say that genes and chromosomes are the most important molecules, however once born your genes pretty much just sit there; hormones tell them what to do. Certainly, the most important message that our cells receive is how and what to do with energy, and therefore life cannot take place without that.

The two most important hormones that deliver messages about energy and metabolism are insulin and leptin.

Metabolism can roughly be defined as the chemistry that turns food into life, and therefore insulin and leptin are critical to health and disease. Both insulin and leptin work together to control the quality of your metabolism (and, to a significant extent, the rate of metabolism).

Insulin works mostly at the individual cell level, telling the vast majority of cells whether to burn or store fat or sugar and whether to utilize that energy for maintenance and repair or reproduction. This is extremely important for on an individual cell level turning on maintenance and repair equates to increased longevity, and turning up cellular reproduction can increase your risk of cancer.

Leptin, on the other hand, controls the energy storage and utilization of the entire republic of cells allowing the body to communicate with the brain about how much energy (fat) the republic has stored, and whether it needs more, or should burn some off, and whether it is an advantageous time nutritionally-speaking for the republic –you– to reproduce or not.

Leptin is a very powerful and influential hormone produced by fat cells. Prior to leptin’s discovery, fat was viewed as strictly an ugly energy storage depot that most everyone was trying to get rid of. After it was discovered that fat produced the hormone leptin (and subsequently it was discovered that fat produced other very significant hormones), fat became an endocrine organ like the ovaries, pancreas and pituitary, influencing the rest of the body and, in particular, the brain.

Leptin, as far as science currently knows, is the most powerful regulator that tells your brain what to do about life’s two main biological goals: eating and reproduction. Your fat, by way of leptin, tells your brain whether you should be hungry, eat and make more fat, whether you should reproduce and even make babies, or (partly by controlling insulin) whether to “hunker down” and work overtime to maintain and repair yourself. In short, leptin is the way that your fat stores speak to your brain to let your brain know how much energy is available and, very importantly, what to do with it. Therefore, leptin may be “on top of the food chain” in metabolic importance and relevance to disease.

It has been known for many years that fat stores are highly regulated. It appeared that when one tried to lose weight the body would try to gain it back. This commonly results in “yo-yo” dieting and in scientific circles one talks about the “set point” of weight. It has long been theorized that there must be a hormone that determines this.

Science points now to leptin as being that hormone.

If a person is getting too fat, the extra fat produces more leptin which is supposed to tell the brain that there is too much fat stored, more should not be stored, and the excess should be burned.

Signals are therefore sent to an area of the brain in the hypothalamus (the arcuate nucleus) to stop being hungry, to stop eating, to stop storing fat and to start burning some extra fat off.

The importance of insulin in health and disease is becoming well-known. Aside from its obvious role in diabetes, it plays a very significant role in hypertension, cardiovascular disease, and cancer.

However leptin may even supersede insulin in importance, for new research is revealing that in the long run glucose and therefore insulin levels may be largely determined by leptin.

It had been previously believed that the insulin sensitivity of muscle and fat tissues were the most important factor in determining whether one would become diabetic or not. Elegant new studies are showing that the brain and liver are most important in regulating a person’s blood sugar levels especially in type 2 or insulin resistant diabetes.

People become leptin-resistant by the same general mechanism that people become insulin-resistant; by overexposure to high levels of the hormone. High blood glucose levels cause repeated surges in insulin, and this causes one’s cells to become “insulin-resistant” which leads to further high levels of insulin and diabetes. It is much the same as being in a smelly room for a period of time. Soon, you stop being able to smell it, because the signal no longer gets through. This is the same happens with leptin. It has been shown that as sugar gets metabolized in fat cells, fat releases surges in leptin, and those surges result in leptin-resistance just as it results in insulin-resistance.

The only known way to reestablish proper leptin (and insulin) signaling is to prevent those surges, and the only known way to do that is via diet and supplements. When leptin signaling is restored, your brain can finally hear the message that perhaps should have been delivered decades ago; high leptin levels can now scream to your brain that you have too much fat and that you better start burning some off for your life is in danger. Your brain will finally allow you access into your pantry that you have been storing your fat in. Your cells will be fed the food from that fat and they will be satisfied. They will not know whether that food came from your belly fat or from your mouth; nor will they care. They will be receiving energy that they need and will not have to ask for more. You will not be hungry.

This also makes counting calories irrelevant, for the calories that you put into your mouth today are not necessarily what your cells will be eating; that will be determined primarily by leptin. Whether or not you put food into your mouth, your cells will be eating, and if they cannot eat fat they must eat sugar. Since little sugar is stored, that sugar will be had by making you crave it, or by turning the protein in your muscle and bone into sugar. This contributes in a major way to weakness and osteoporosis. Whether or not this lean tissue wasting happens is determined by your capacity, or incapacity, to burn fat, and that is determined by your ability to listen to leptin.

When you become leptin-resistant, your body can no longer hear the messages telling it to stop eating and burn fat — so it remains hungry and stores more fat.

Leptin-resistance also causes an increase in visceral fat, sending you on a vicious cycle of hunger, fat storage and an increased risk of heart disease, diabetes, metabolic syndrome and more.

People become both insulin and leptin resistant by eating the typical
American diet full of sugar,refined grains,processed foods and not a whole lot else. The solution is to instead eat a diet that emphasizes good fats and avoids blood sugar spikes — in short a dietary program detailed which emphasizes healthy fats, lean meats and vegetables, and restricts sugar and grains.

Ref: Ron Rosedale, M.D.