Posts Tagged ‘stress’

Immune System Response, Exercise and Inflammation

anti-aging, disease, Fitness, Free Radicals, inflammation, nutrition, performance, Recovery - Repair | Posted by admin April 30th, 2016

biocellsLike other stressors in our lives—allergic reactions, lack of sleep, emotional duress, poor nutritional intake and excess body fat—exercise can directly affect the body’s complex immune system and produce a cascading effect of inflammatory responses.

 

Inflammation occurs at the peak of the immune response when conditions such as fever trigger the body to increase blood flow and bring in specialized immune cells to help repair and remove damaged tissues.

An acute (short-term) response to internal and external invaders is the basis of a successful immune system. However, when inflammatory stressors become chronic (long-term) and accumulate, trouble begins.

The immune system is divided into two types of responses: natural and specific. The natural response is an all-purpose first line of defense comprising cells that identify and attack a number of different invaders in a short time frame. White blood cells and other cells devour invading pathogens and initiate inflammation by releasing toxic substances that damage and then consume the invader or damaged tissue.

The second component of the immune system, the specific response, is far more complex and mostly beyond the scope of this discussion. Simply put, the specific response recognizes a specific invader, like bacteria or an allergen, and then mounts a defense against it.

This intricate protective mechanism helps maintain the biochemical balance in the body that maintains health or promotes healing. Many body systems must remain balanced for homeostasis to occur. One important example is the endocrine system, which controls much of the body’s regulating hormones, the body’s pH, body temperature and chemicals in the bloodstream, all of which are delicately balanced and vulnerable if altered for a significant length of time.

Physical & Mental Stressors

It should be noted that the immune system is well designed to handle such physical stressors as microbes, sprained ankles and hay fever. What is not clear, however, is how the immune system reacts to the accumulation of other physical stressors—poor nutrition, lack of sleep, food allergies or sensitivities, postural and joint misalignment and foreign substances.

Additionally, behavioral scientists have been examining the effect of mental and emotional stressors. Significant research has indicated that mental stressors provide as great a challenge to homeostasis as physical conditions like influenza or muscle tears.

The term allostatic load refers to the method by which the body adjusts to the combined effect of many physical and mental stressors. A high allostatic load is essentially an overload of those different stressors, creating what one researcher dubbed “a cascade of cause and effect”.

The connecting factor among physical, emotional and mental stressors occurs in an area of the brain known as the HPA axis. Consisting of the hypothalamus, pituitary gland and adrenal gland, the HPA axis serves as the body’s emergency alert system that responds to a variety of stressors by releasing hormones, such as epinephrine and norepinephrine, which prepare different body systems for action. The HPA axis also releases growth hormone (GH) and cortisol; GH helps repair tissue and promotes growth, whereas cortisol fuels the body by maintaining proper glucose and fatty acid levels.

When faced with a lot of different stressors (i.e., a high allostatic load), the intricately tuned immune system can get caught in a stress hormone–inflammation loop. Hormones are released at higher than normal levels, leading to an increase in pro-inflammatory cytokines, which, in a vicious circle, then re-stimulates the HPA axis. Cortisol levels also increase and alter the immune/ inflammation system, resulting in higher levels of inflammatory factors in the body.

Exercise & Inflammation

So how do the immune system, HPA axis and stress response all fit into the exercise and fitness equation? Exercise is a physical stressor, and the exercise stress response follows similar inflammatory physiological pathways to those activated by other physical and mental stimuli.

In fact, the response to exercise is so parallel that exercise scientists borrowed the phrase general adaptation syndrome (GAS) from Hans Selye, a behavioral scientist who pioneered much of the early extensive research on the stress response. According to Selye, stress causes a temporary decrease in function, followed by an adaptation that improves function. In order for us to improve our health, fitness or athletic ability, it is necessary to increase our efforts to fatigue-level intensities and then recover and refuel.

During exercise, the primary hormones that get released are

  • epinephrine (to increase heart rate and blood flow to the muscles)
  • norepinephrine (to raise blood pressure)
  • cortisol (to mobilize fuel sources and lower any inflammation)
  • growth hormone and glucagons (to protect blood glucose and mobilize other energy sources for fuel)

These hormones are the same as those secreted when the body is reacting to mental and emotional stressors.

If the exercise session was designed to elicit higher levels of strength or conditioning, some degree of muscle damage occurred, calling upon the immune system to respond in a number of ways, including an inflammatory response to help muscle repair. While this process promotes muscle regeneration, it can also slow the body’s ability to repair muscle tissue.

Contributing Factors for Inflammation

Many factors play a significant role in increasing body inflammation, including physical imbalances, diet, allergies, sleep deprivation, excess weight and age.

Physical Conditions. Postural and joint mal-alignments play a major role in inflammatory conditions. Exercisers who spend long periods of time sitting each day are especially vulnerable when performing certain upright movements that can create excessive friction in joint complexes. Excessive shoulder internal rotation, thoracic flexion and hip external rotation are classic seated mal-alignment issues that result in pain or damage to areas that then become inflamed.

Poor Diet. One huge contributing factor to inflammation is the Western convenience/comfort food diet, which is high in saturated and trans fats, simple carbohydrates and animal proteins. The American Dietetic Association (ADA) urges Americans to reduce their consumption of saturated and trans fatty acids to diminish risk factors for inflammation-based disorders such as cancer, cardiovascular disease, cerebral infarction and other immune disorders.. Food allergies and sensitivities also contribute to inflammation. The most common food allergies involve wheat gluten, nuts or shellfish. While less severe than allergies, food sensitivities can produce subtle inflammatory reactions to common trigger foods; for example, products made with dairy, corn, soy, wheat, sugar and nuts

Other Allergens. In addition to food, allergens such as chemicals, dust, mold or pollens can cause the body’s immune system to release chemical neurotransmitters called histamines, which trigger an inflammatory process in the blood vessels. The allergic reaction can be slight (e.g., itchy skin, runny nose) or far more serious (e.g., blood pressure drop, swelling, shortness of breath). Environmental pollutants, cleaning products and noise can also increase inflammation.

Sleep Deprivation. Lack of sleep is associated with inflammation. Sleep is a time for the body to recover and repair both mentally and physically. That’s why sleep experts recommend getting 7–9 hours nightly to function optimally. Studies indicate that this time period is critical for biochemical balance in substances like GH and cortisol.

Excess Weight. Biochemical imbalances have also been linked to inflammation caused by excess intra-abdominal fat. Beyond a certain level, excessive intra-abdominal fat produces a cortisol response, which tells the body to store fat; this begins a never-ending feedback loop.

Advanced Age. Another contributing factor is age. As we age, interleukin levels increase dramatically, which plays a role in the development of many diseases of aging, including heart disease, osteoporosis, Alzheimer’s disease and other cognitive impairment diseases.

Tailoring Exercise Programs

Research indicates that high-intensity (> 70% of maximal effort) exercise sessions lasting longer than 20–30 minutes or low-intensity (< 50%–70%) efforts lasting longer than 75 minutes can flood the body with stress and inflammation biochemical markers, initiating a cascading response. It therefore makes sense to devise a workout that stays within those time and intensity parameters.

Moderate exercise at lower intensities is the better course. Moderate exercise efforts for up to 60 minutes can actually reduce inflammatory markers, increase positive neurotransmitters (e.g., serotonin and endorphins) and improve brain chemistry. Moderate intensities also stimulate the growth of new brain cells, neurons and capillary growth to muscles and neurons.

According to most studies, exercising under the 70% effort level seems to be the baseline for reducing inflammation and stress hormone levels These reduced efforts should be combined with exercise programming design that includes myofascial release, flexibility training and corrective exercise. This type of program can help relieve stress, improve joint alignment and muscle activation and reduce the inflammatory response.

Mental Element

It is perfectly acceptable to give less of an effort and work at lower intensities during times of high stress. High-intensity, long-duration workouts are counterproductive if performed during a time of high demands and increased stress in other areas of life.

Managing the hormonal component of exercise can actually help produce gains. The outdated “no pain, no gain” approach can be detrimental to health because at best it stimulates the body to retain body fat or lose muscle mass and at worst it creates a chronic state of injury and illness.

Inflammation also supports the healing power of 7–8 hours of sleep. Sleep is critical to maintaining biochemical homeostasis. The primary function of sleep is to give the body and the mind some restorative time to help decrease systematic inflammation.

Proactive Anti-Inflammatory Strategy

Several proactive anti-inflammatory nutrition strategies that are fairly simple. For example, research has shown that inflammation can be prevented or reduced by the following:

  • adding more fruits and vegetables to the diet
  • reducing intake of trans fats and saturated fats
  • increasing intake of omega-3 fats (found in fish oils, olive oil, avocados and walnuts)
  • reducing intake of simple carbs and animal protein

Some herbs and other phytochemicals have been shown to significantly reduce inflammation in the body. For example, an active component in the herb turmeric called curcumin has been studied extensively for its ability to inhibit cancer cell growth. Ginger has exhibited the same properties. Some dietary supplements combine tumeric, ginger, rosemary, basil and other herbs to create a potent natural anti-inflammatory with no known side effects. Studies have found that this specific combination is as effective as some pharmaceutical compounds at stemming inflammation.

NSAIDs work to inhibit hormones in the body called prostaglandins, which are vital to many physiological processes but specifically cause the sensation of pain as a protective mechanism. Because these hormones are important in gastric function and because NSAIDs eliminate all prostaglandin activity, gastric distress can be a side effect. Newer studies are finding that instead of speeding recovery from muscular injury, ingestion of traditional NSAIDs may actually slow the process for several days as protein synthesis (tissue healing) is delayed.

Common types of traditional NSAIDs include aspirin, ibuprofen, naproxen, ketoprofen and indomethacin. It should be noted that while acetaminophen (Tylenol™) is classified as an NSAID, it exhibits little or no anti-inflammatory effects despite its analgesic properties.

Reference:   IDEA Health & Fitness Association     http://www.ideafit.com

Manipulating The Glycemic Index Diet – The Winning Edge ???

distance runners, Fitness, nutrition, performance, Recovery - Repair, strength | Posted by admin September 13th, 2015

A high-carbohydrate training diet is a must for optimum sports performance because it produces the biggest stores of muscle glycogen. Unlike the fat stores in the body, which can release almost unlimited amounts of fatty acids, the carbohydrate stores are small. They are fully depleted after two or three hours of strenuous exercise. This depletion of carbohydrate stores is called “hitting the wall.” The blood glucose concentration begins to decline at this point. If exercise continues as the same rate, blood glucose may drop to levels that interfere with brain function and cause disorientation and unconsciousness.

All else being equal, the eventual winner is the person with the largest stores of muscle glycogen. It is important to maximize your muscle glycogen stores by ingesting a high-carbohydrate training diet and by carb loading in the days prior to the competition.

There are times when low G.I. foods provide an advantage and times when high G.I. are better. For best performance a serious athlete needs to learn which foods have high and low G.I. factors and when to eat them. Understanding the glycemic index and making the best food choices can give you an advantage.

Low-GI Foods: Before the Event
Low-GI foods have been proven to extend endurance when eaten alone one or two hours before prolonged strenuous exercise. Low-GI foods are best eaten about two hours before the big event –so that the meal will have left the stomach but will remain in the small intestine, slowly releasing glucose energy, for hours afterwards. The slow rate and steady stream of glucose trickles into the bloodstream during the event. Most importantly, the extra glucose will still be available toward the end of the exercise, when muscle stores are running close to empty. In this way, low-GI foods increase endurance and prolong the time before exhaustion hits.

When a pre-event meal of lentils (low GI value) was compared with one of potatoes (high GI value), cyclists were able to continue cycling at high intensity (65 percent of their maximum capacity) for twenty minutes longer when the meal had a low G value. Their blood-glucose and insulin levels were still above fasting levels at the end of exercise, indicating that carbohydrates were continuing to be absorbed from the small intestine even after ninety minutes of strenuous exercise.

In any sport context, it’s critical to select low-GI foods that do not cause gastrointestinal discomfort (stomach cramps, etc.). Some low-GI foods, such as legumes that are high in fiber or ingestible sugars, may produce symptoms in people not use to eating large amounts of them. There are plenty of low-fiber, low-GI choices, including pasta, noodles, and Basmati rice.

High- GI Foods: During and After the Event
While the pre-event meal should have a low GI value, scientific evidence indicates that there are times when high-GI foods are preferable. This includes during the event, after the event, and after normal training sessions. This is because high-GI foods are absorbed faster and stimulate more insulin, the hormone responsible for getting glucose back into the muscles for either immediate or future use.

During the event
High-GI foods should be used during events lasting longer than ninety minutes. This form of carbohydrate is rapidly released into the bloodstream and ensures that glucose is available for oxidation in the muscle cells. Liquid foods are usually tolerated better than solid foods, for endurance racing for example, because they are emptied more quickly from the stomach. Sports drinks are ideal during the race because they replace water and electrolytes as well. If you feel hungry for something solid during a race, try jelly beans (GI value of 80) or another form of high-glucose candy. Consume 30 to 60 grams of carbohydrate per hour during the event.

After the event (recovery)
In some competitive sports, athletes compete on consecutive days, and glycogen stores need to be at their maximum each time. Here it is important to restock the glycogen store in the muscles as quickly as possible after each day’s events. High-GI foods are best in this situation. Muscles are more sensitive to glucose in the bloodstream in the first hour after exercise, so a concerted effort should be made to get as many high-GI foods in as soon as possible.

Suggested foods include most of the sports drinks which replace water and electrolyte losses, or high-GI rice (e.g., jasmine), breads, and breakfast cereals such as cornflakes or rice krispies. Potatoes cooked without fat are good choice too but their high satiety means it is hard to eat lots of them.

Carbohydrate Loading For Training & Understanding
Why This Is Important…

It’s not just your pre- and post-event meals that influence your performance. Very active people need to eat much larger amounts of carbohydrates than inactive people. Consuming a high-carbohydrate diet every day will help you reach peak performance. When athletes fail to consume adequate carbohydrates each day, muscle and liver glycogen stores eventually become depleted. Dr. Ted Costill at the University of Texas showed that the gradual and chronic depletion of stored glycogen may decrease endurance and exercise performance. Intense workouts two to three times a day draw heavily on the athlete’s muscle glycogen stores. Athletes on low-carbohydrate diet will not perform their best because muscle stores of fuel are low.
If the diet provides inadequate amounts of carbohydrate, the reduction in muscle glycogen will be critical. An athlete training heavily should consume about 500 to 800 grams of carbohydrate a day (about two to three times normal) to help prevent carbohydrate depletion. Typically, American adults consume between 200 to 250 grams of carbohydrates each day.

Could a High-GI Diet Be Harmful to Athletes?

By virtue of their high activity levels, athletes have optimal insulin sensitivity. When they eat high-carbohydrate, high-GI foods, blood glucose and insulin levels rise far less in them than in the average person. This also provides the athlete with a bonus by not exposing their bodies to dangerous levels of blood glucose which produce disease in sedentary, insulin resistant individuals.

Adapted from the Book: The New Glucose Revolution
Written by: Jennie Brand-Miller, PhD
Thomas M.S. Wolever, MD PhD
Stephen Colagiuri, MD
Kaye Foster-Powell, M Nutr & Diet

Decrease Oxidative Stress Naturally in Healthy Older Men and Women?

anti-aging, disease, Free Radicals, nutrition, Recovery - Repair | Posted by admin November 8th, 2013

Compared with young adults, older adults have significantly impaired capacities to resist oxidative damage when faced with acute stress such as ischemia/reperfusion. This impairment likely contributes to increased morbidity and mortality in older adults in response to acute trauma, infections, and the susceptibility to diseases such as atherosclerosis, cancer, diabetes, and Alzheimer’s disease.  Consumption of foods high in polyphenols, particularly anthocyanins, have been associated with improved health, but the mechanisms contributing to these salutary effects remain to be fully established.

A study tested the hypothesis that consumption of tart cherry juice containing high levels of anthocyanins improves the capacity of older adults to resist oxidative damage during acute oxidative stress. In a double-blind, placebo-controlled, crossover design, data suggests that consumption of tart cherry juice improves antioxidant defenses in vivo in older adults as shown by an increased capacity to constrain an oxidative challenge and reduced oxidative damage to nucleic acids.

Oxidative stress, defined as an imbalance between the rate of formation and the rate of clearance of reactive oxygen and nitrogen species (RONS), is thought to be a key mechanism in the aging process and in a variety of age-related chronic diseases, including atherosclerosis, cancer, diabetes, and Alzheimer’s disease.

Research has recently shown that healthy older adults have an impaired capacity to resist oxidative damage after exposure to an acute stress compared with young adults.  This impairment may account for the greater morbidity and mortality of older adults compared with young adults during trauma, infections, or surgery, as well as their increased susceptibility to cardiovascular and neurodegenerative disease.   Acute stress increases production of reactive oxygen species and frequently occurs in acute events that afflict older adults such as trauma, cardiovascular disease, and surgery.

The antioxidative capacity of older adults appears to be sufficient to maintain homeostasis in non-stressed conditions, but insufficient to cope with a substantial oxidative challenge. Therefore, identifying interventions that improve resistance to oxidative damage during an acute challenge might be of great potential value in decreasing morbidity and mortality in older adults, even if these interventions do not affect basal levels of oxidation.

It has been proposed that the antioxidant activities of fruits and vegetables come from the additive and synergistic effects of their phytonutrients and that isolated dietary supplements do not exhibit these same benefits.  Therefore, an intervention that would provide a natural blend of phytonutrients lead to Tart cherries which have high levels of antioxidants in the form of phenolic compounds and anthocyanins.  Diets rich in polyphenols, especially anthocyanins, have been shown to increase resistance to oxidation in research models.

Because anthocyanins can activate xenobiotic responses, including expression of a plethora of antioxidant response genes, it is hypothesized that increasing the dietary intake of diverse antioxidants, such as those contained in tart cherry juice, would increase resistance to oxidative damage after an acute stress, an effect that could potentially dramatically improve resistance to morbidity and mortality in older adults.

The conclusion of the data from a placebo-controlled, crossover study demonstrated that a dietary antioxidant intervention through consumption of tart cherry juice improves antioxidant defenses in vivo in older adults as shown by an increased capacity to resist oxidative damage after an acute stress and reduced oxidative damage to nucleic acids. The results also highlighted the observation that various markers of oxidative damage may reflect different mechanisms of resistance to oxidative damage.

 

References:   The Journal of Nutritionhttp://jn.nutrition.org
published online August 19, 2009; doi:10.3945/jn.109.111716
research study conducted –
Kronos Longevity Research Institute, Phoenix, AZ; 5Kronos Science Laboratory, Phoenix, AZ 85016; and Vanderbilt University School of Medicine, Nashville, TN 37232

Glutathione Considered – The Body’s Master Antioxidant

performance, Recovery - Repair | Posted by admin November 22nd, 2009

Antioxidants are intimately involved in the detoxification process and are a very important part of our defenses against environmental toxins and carcinogens. They protect our cells from oxidative stress which can come from our environment in a variety of ways. Because such damage plays a role in the weakening of the immune system that it should come as no surprise that antioxidant supplementation can benefit those with degenerative diseases such cardiovascular disease, cancer, arthritis, neurological diseases and viral infections for example.

Let’s look at one antioxidant –Glutathione- and how glutathione can affect the body. Glutathione is a small molecule made up of three amino acids, which exists in almost every cell of the body. The presence of glutathione is required to maintain the normal function of the immune system. It is known to play a critical role in the multiplication of lymphocytes (the cells that mediate specific immunity), which occurs in the development of an effective immune response. The cells of the immune system produce many oxygen radicals as a result of their normal functioning, resulting in a need for higher concentrations of antioxidants than most cells. Glutathione plays a crucial role in fulfilling this requirement.

Glutathione helps the body fight almost any disease, because it is a powerful antioxidant and helps maintain cellular health and there is a body of research on degenerative disease that has shown that people with degenerative disease are also experiencing low levels of glutathione. Glutathione acts as a detoxifying agent by combining with undesirable substances and ridding the body of them through urine and bile. Aside from being a powerful antioxidant and system detoxifier, it helps repair and protect DNA. Glutathione has been heavily researched and many researchers believe that the degenerative processes take place when the body is lacking the glutathione it needs to protect from degenerative damage.

Glutathione works in a protective role by boosting the immune system, thereby helping the body’s immune response and helps protect the body from oxidative stress – and oxidative stress is associated with aging. Thus, glutathione levels are correlated with aging and physical function. One way to drastically increase glutathione levels, aside from consuming glutathione precursors, is through the ingestion of ascorbic acid – vitamin C3 – and l-glutamine, vitamin E, ALA (Alpha Lipolic Acid), and N-acetylcysteine (NAC) which all help with glutathione synthesis.

Oxidation damage is now recognized as being the key feature of much of the aging processes that our bodies endure. It is known that as we age, there is a precipitous drop in GSH levels. Lower Glutathione levels are implicated in many diseases associated with aging, including Cataracts, Alzheimer’s disease, Parkinson’s, arteriosclerosis and others.

The key to living better is to resist age related deterioration due to oxidation. Recent studies have shown that glutathione play a key role in reducing the oxidation process (antioxidant) and protecting our bodies against free radicals. Supplements that increase glutathione may be a way for us to protect our bodies against the aging process.

What can reducing the oxidative process on the body mean for the athlete?

Many world-class athletes are discovering the importance of glutathione, which when maintained, gives them the edge over the competition. Increased glutathione levels provides athletes with increased strength and endurance, decreased recovery time from injury, less pain and fatigue and possibly an increase in muscle-promoting activities.

During workouts, athletes generate free radicals which in turn lead to muscle fatigue and poorer performance. Glutathione neutralizes these radicals and allows our bodies to recover faster. Recent research indicates that the body has a natural tendency toward many degenerative diseases and aging itself. Some believe how well the body can protect itself from damage and recover from oxidative damage can be determined by measuring the intracellular stores of Glutathione.

We support Prevention vs Prescriptions:
GoTo: Prevention not Prescriptions

Antioxidants for Athletes – Controls Oxidative Stress Damage

performance, Recovery - Repair | Posted by admin September 13th, 2009

Studies have shown that with vigorous exercise you body needs more antioxidant consumption to protect the body from free radical-induced oxidative stress & DNA damage. Endurance exercise can increase oxygen utilization from 10 to 20 times over the resting state. This greatly increases the generation of free radicals, prompting concern about enhanced damage to muscles and other tissues. The question that arises is how effectively can athletes defend against the increased free radicals resulting from exercise? Do athletes need to take extra antioxidants?

Free radical-induced oxidative stress is an inevitable consequence of prolonged exercise and results in tissue damage, excessive fatigue, delayed recovery and overtraining. On a microscopic level, oxidation generally entails molecules or atoms losing electrons. (Gaining electrons is called reduction.) The molecules or atoms that take these electrons are oxidizing agents. Free radicals are substances that can exist with missing electrons, making them readily able to donate or accept electrons and damage structures in cells. As such, they are highly reactive, binding with and destroying important cellular compounds. Most of the free radicals in your body are made during metabolic processes. More are added from the food you eat and environmental pollution.

Most of these free radicals contain oxygen molecules. As each cell makes energy in little structures called mitochondria, free radicals result. These oxidant by-products can damage DNA, proteins and lipids (fats). Consequently, toxic by-products of lipid peroxidation may cause cancer, inhibit enzyme activity and produce mutations in genetic material that make you age faster. Free radical damage to DNA can cause cells to mutate or die. Your body makes enzymes that can repair this damage and slow aging. But, over time, the amount of damage overwhelms the body’s ability to fix things. As cells grow older, their ability to patch up DNA diminishes and the rate of damage proceeds faster than repair. The result: We age and eventually die.

As an active athlete, your body is carrying out higher levels of oxidation to meet the extra energy requirement. This means that the coping strategies for minimizing the negative effects of free radicals will be taxed – sometimes beyond their limits. When this happens, large-scale muscle structures can be damaged; muscles can end up being overly contracted, sore, and less efficient at using energy. Red blood cells can become ‘leaky’, malformed and easily broken, which may lead to anemia.

To prevent free radical damage the body has a defense system of antioxidants. Antioxidants are molecules which can safely interact with free radicals and terminate the chain reaction before vital molecules are damaged. A study, published in the European Journal of Physiology, suggest that taking antioxidants, such as a mixture of vitamins C and E and beta-carotene, provides extra protection during strenuous exercise, and that maintaining adequate levels of antioxidants could decrease the risk of infection. A number of clinical studies have shown that taking a wide range of antioxidants can help to counter free radical damage in endurance athletes. Other studies have shown that taking nutritional antioxidant supplements reduce the risk of developing upper respiratory infections after prolonged exercise, such as running a marathon.

Some well known dietary antioxidants are vitamins A, C, E; ß-carotene, selenium and plant based antioxidants such as curcumin, quercetin, resveratrol and rutin. For example, Curcumin helps control inflammation and speed performance recovery. In addition, melatonin, DHEA and the amino acid compound glutathione may also prove of benefit. Additionally, selenium, a trace metal that is required for proper function of one of the body’s antioxidant enzyme systems, is sometimes included in this category. The body cannot manufacture many of these micronutrients so they must be supplied in the diet.

Athletes need to understand that their body requires a wide variety of antioxidants to deal with the many different types of free radicals that are released during energy production. Athletes need to ensure that they have an adequate intake of a wide variety of effective antioxidants to compromise free radical production.

Free radical-induced oxidative stress is an inevitable consequence of prolonged exercise and results in tissue damage, excessive fatigue, delayed recovery and overtraining Trained athletes appear to require higher intakes of antioxidants to defend against increased oxidative stress during exercise, which can be met through a diet rich in high antioxidant foods Athletes who want to achieve good results can look to their diets and dietary supplements to maintain good health and to improve post-event recovery. In addition they improve post event recovery and accelerate muscle repair – this is especially important for older athletes.

Suggestion: Bio-available curcurmin with selenium http://tinyurl.com/mzf25d