Archive for the ‘performance’ Category

Pancreatic cancer – daily diet of sugar?

nutrition, performance, Recovery - Repair | Posted by admin October 31st, 2010

(NaturalNews) New research published in the journal Nature reveals that pancreatic cancer can take up to 20 years to grow to the point where it is diagnosed by the practice of conventional medicine. This was determined by sequencing the DNA of cancer tumor cells from deceased patients. Because cancer mutations occur in growing tumors at a known rate, scientists were able to map the timing of the development of full-blown pancreatic cancer tumors.

Johns Hopkins University School of Medicine and the Howard Hughes Medical Institute found:

• It takes an average of 11.7 years for one mutation in a pancreas cell to grow into a “mature” pancreatic tumor (which might show up on a medical scan).

• It can take another 6.8 years for the pancreatic tumor to spread and cause tumors to appear in other organs of the body.

How to grow and feed a cancer tumor

First of all, to grow a cancer tumor, you need to eat lots of sugar. Liquid sugars are the best (like soda?), but any form of refined sugar will do. You have to eat sugar daily if you really want to support cancer cell division and growth.

Next, you have to be vitamin D deficient most of the time.  That’s because vitamin D may halt the progress of 77 percent of all cancers (including pancreatic cancer), and when combined with other nutrients like selenium, may halt progress of even more.

By combining vitamin D and selenium nutrition with other anti-cancer nutrients such as fresh vegetable juice (on a daily basis), omega-3 fatty acids, a wide variety of fresh fruits (including citrus and berries), and even red wine (rich with resveratrol), you will create an internal biological environment in which cancer tumors cannot thrive.

This is especially true if you pursue a more alkaline diet that’s rich in vegetables and green foods rather than acidic substances such as sugar, fried foods and caffeine.

Combine all this with some regular exercise, good sleep, stress reduction habits and strict avoidance of cancer-causing chemicals, and you’ve got a recipe for blocking virtually all tumor growth in your body.

Cancer tumors simply cannot grow in an environment that’s rich in plant-based nutrients and life based on healthy, natural living.

So even if you have a wayward pancreatic cell that decides to mutate and try to become cancerous on its own, that cell will not have any long-term success in replicating inside your body because it’s surrounded by healthy cells and bathed in anti-cancer nutrients carried to it each day in your blood!

Remember, your cells rely entirely on nutrients delivered by your blood, and if your blood is delivering anti-cancer nutrients each day, then “bad” cells will never be allowed to replicate and become cancer tumors.

Obviously, the composition of your blood is determined by what you eat. If you eat junk food, your blood will be junk blood, and it will deliver junk to your cells (cancer cells love junk!). If you eat healthy foods, you will have healthy blood, and cancer tumors will shrivel up and actually lose their blood supply then die.

With this in mind, your life and health are not a rehearsal.  Nutrition is the key to your health, strength and performance.  Learn what combination of nutritional foods support your health at the cellular level, then learn to like them.  In all cases, refined sugars need to be limited as much as possible.

If you’ve been pursuing a lifestyle of junk foods, processed foods, fried foods, excessive animal products and sun avoidance, then you are probably growing cancer tumors in your body right now. Almost as if you were trying to!

So you might be on year 10 of the 20-year cancer diagnosis plan. There’s no way to know because solid cancer tumors usually don’t show up in diagnostic tests when they’re only 10 years old. But if you’ve been following a cancer-promoting lifestyle, you can rest assured you have micro tumors in your body that are just waiting for more sugar and less vitamin D in your blood in order to divide and grow even more.

Consider yourself informed… Preventing cancer is its cure.

Adapted from Mike Adams, the Health Ranger, NaturalNews Editor

Glutathione – Master Anti-Oxidant offers the Competitive Edge

anti-aging, Fitness, nutrition, performance, Recovery - Repair | Posted by admin August 30th, 2010

What is Glutathione?

Glutathione simply put is the “Master Antioxidant” in your body. Increasing glutathione levels will naturally increase your energy, detoxify your body and strengthen your immune system.

Research has shown that individuals that have low glutathione levels are susceptible to chronic illness including heart conditions, cancers, diabetes, seizures disorders, Alzheimer’s disease, and Parkinson’s disease to name a few. Our glutathione levels begin to decline at the age of 20 and do so at a rate of 8%-12% per decade.

Anti-Aging

Aging is the accumulation of changes in an organism overtime. Oxidation damage is now recognized as being the key feature of much of the aging processes that our bodies endure. The key to living better is to resist age related deterioration due to oxidation. Recent studies have shown that glutathione play a key role in reducing the oxidation process (antioxidant) and protecting our bodies against free radicals. Supplements that increase glutathione, may be a way for us to protect our bodies against the aging process.

Sports Enhancement

Many world-class athletes are discovering the importance of glutathione, which when maintained, gives them the edge over the competition. Increased glutathione levels provides athletes with increased strength and endurance, decreased recovery time from injury, less pain and fatigue and possibly an increase in muscle-promoting activities.

Athletes use glutathione for sports performance and recovery from their strenuous workouts. Up until very recently there was not a efficient way to get glutathione into our bodies other than intravenous (IV).

During workouts, athletes generate free radicals which in turn lead to muscle fatigue and poorer performance. Glutathione neutralizes these radicals and allows our bodies to recover faster.

Sports

Should Glutathione be a part of our exercise routine?

Free radicals are produced during normal cellular metabolism and increase when we exercise. These free radicals react within the cells by a process called oxidation and can result in inflammation to accumulate with our bodies. Overtime this inflammation accumulates within the cell and decreases the function of the cell and eventually leads to cellular death unless we have a way of reversing the process. To fight this cellular destruction our body uses an antioxidant, and the “Master Antioxidant” in the body is Glutathione.

Several studies have confirmed the beneficial effects of glutathione in protecting our bodies tissues from free radicals and exercise induced stress. Increasing Glutathione can increase energy, decrease recovery time and provide our cells with the tools so that they can function at an optimal level.

Ref: asktheRN.com

Bioavailable glutathione enhancement option link here:

Water: How much needed for health & optimal athletic performance?

Fitness, nutrition, performance, Recovery - Repair | Posted by admin June 27th, 2010

Water is absolutely critical to our body which comprises about 75% water; the brain has 85%, blood 90%, lungs 90%, muscles 75%, kidney 82% and even bones has 22%.  Basically, we are made of water!

Water dissolves the many valuable nutrients, minerals, and chemicals in the biological processes and transports them to different parts of our body. The carbohydrates and proteins that our bodies use as food are metabolized and transported by water in the bloodstream. Water is just as important in the transport of waste and toxins out of our bodies. Without the replenishment of fresh water, our body will fail to function, start to waste away, and finally collapse. An adult loses about 2.5 liters water every day through perspiration, breathing, and elimination (urine and feces), and when the body loses 5% of its total water volume, symptoms of dehydration such as thirst, reduced mental concentration, blurred vision, muscle cramps, unexplained tiredness, irritation, dark urine, will begin to show up.

The consequence of consuming insufficient water can be devastating to our body. The cells will start to draw water from the bloodstream instead, causing the heart to work harder. At the same time, when the kidneys fail to cleanse the blood effectively due to inadequate water, the liver and other organs will have to work harder, putting them under extra stress. Continuous water loss over time will speed up aging but increase risks of diseases and health issues such as constipation, dry and itchy skin, acne, nosebleeds, urinary tract infection, coughs, sneezing, sinus pressure, and headaches.

So, how much water should you drink a day? How much water is enough for you? The minimum amount of water you need depends on our body weight. As a general guide, for two pounds of body weight, an ounce of water is required.  So, if you are 60kg (1 kg is 2.54 lbs), you should drink about 2 liters of water every day.

Specifics of Understanding:

  • Every day you lose water through your breath, perspiration, urine and bowel movements. For your body to function properly, you must replenish its water supply by consuming beverages and foods that contain water. Several approaches attempt to approximate water needs for the average, healthy adult living in a temperate climate.
  • Replacement approach.  The average urine output for adults is about 1.5 liters (6.3 cups) a day.  You lose close to an additional liter of water a day through breathing, sweating and bowel movements.  Food usually accounts for 20 percent of your total fluid intake, so if you consume 2 liters of water or other beverages a day (a little more than 8 cups) along with your normal diet, you will typically replace the lost fluids.
  • Eight 8-ounce glasses of water a day.  Another approach to water intake is the “8 x 8 rule” — drink eight 8-ounce glasses of water a day (about 1.9 liters). The rule could also be stated, “drink eight 8-ounce glasses of fluid a day,” as all fluids count toward the daily total.  Though the approach isn’t supported by scientific evidence, many people use this basic rule as a guideline for how much water and other fluids to drink.
  • Dietary recommendations. The Institute of Medicine advises that men consume roughly 3 liters (about 13 cups) of total beverages a day and women consume 2.2 liters (about 9 cups) of total beverages a day. Even apart from the above approaches, if you drink enough fluid so that you rarely feel thirsty and produce 1.5 liters (6.3 cups) or more of colorless or slightly yellow urine a day, your fluid intake is probably adequate. Factors that influence water needs: You may need to modify your total fluid intake depending on how active you are, the climate you live in, your health status, and if you’re pregnant or breast-feeding.
  • Exercise. If you exercise or engage in any activity that makes you sweat, you need to drink extra water to compensate for the fluid loss. An extra 400 to 600 milliliters (about 1.5 to 2.5 cups) of water should suffice for short bouts of exercise, but intense exercise lasting more than an hour (for example, running a marathon) requires more fluid intake. How much additional fluid you need depends on how much you sweat during exercise, the duration of your exercise and the type of activity you’re engaged in? During long bouts of intense exercise, it’s best to use a sports drink that contains sodium, as this will help replace sodium lost in sweat and reduce the chances of developing hyponatremia, which can be life-threatening. Also, continue to replace fluids after you’re finished exercising.
  • Environment. Hot or humid weather will make you sweat and requires additional intake of fluid. Heated indoor air also can cause your skin to lose moisture during wintertime. Further, altitudes greater than 8,200 feet (2,500 meters) may trigger increased urination and more rapid breathing, which use up more of your fluid reserves.
  • Illnesses or health conditions. Signs of illnesses, such as fever, vomiting and diarrhea, cause your body to lose additional fluids. In these cases you should drink more water and may even need oral rehydration solutions, such as Gatorade or Poweraid supplements.  Also, you may need increased fluid intake if you develop certain conditions, including bladder infections or urinary tract stones. On the other hand, some conditions such as heart failure and some types of kidney, liver and adrenal diseases may impair excretion of water and even require that you limit your fluid intake.
  • Pregnancy or breast-feeding. Women who are expecting or breast-feeding need additional fluids to stay hydrated. Large amounts of fluid are used especially when nursing. The Institute of Medicine recommends that pregnant women drink 2.3 liters (about 10 cups) of fluids daily and women who breast-feed consume 3.1 liters (about 13 cups) of fluids a day.
  • Other sources.  Although it’s a great idea to keep water within reach at all times, you don’t need to rely only on what you drink to satisfy your fluid needs. What you eat also provides a significant portion of your fluid needs. On average, food provides about 20 percent of total water intake, while the remaining 80 percent comes from water and beverages of all kinds. For example: many fruits and vegetables, such as watermelon and tomatoes, are 90 percent to 100 percent water by weight. Beverages such as milk and juice also are composed mostly of water. Even beer, wine and caffeinated beverages — such as coffee, tea or soda — can contribute, but these should not be a major portion of your daily total fluid intake. Water is one of your best hydration source because it’s calorie-free, inexpensive and naturally available.
  • When to hydrate?   It’s generally not a good idea to use thirst alone as a guide for when to drink. By the time you become thirsty, it’s possible to already be slightly dehydrated. Further, be aware that as you get older your body is less able to sense dehydration and send your brain signals of thirst. Excessive thirst and increased urination can be signs of a more serious medical condition. Talk to your doctor if you experience either. To ward off dehydration and make sure your body has the fluids it needs, make water your beverage of choice. Nearly every healthy adult can consider the following: Drink a glass of water with each meal and between each meal. Hydrate before, during and after exercise. Substitute sparkling water for alcoholic drinks at social gatherings. If you drink water from a bottle, thoroughly clean or replace the bottle often to avoid disease and infections.

 

Drinking too much water?

  • Though uncommon, it is possible to drink too much water. When your kidneys are unable to excrete the excess water, the electrolyte (mineral) content of the blood is diluted, resulting in low sodium levels in the blood, a condition called hyponatremia. Endurance athletes, such as marathon runners, who drink large amounts of water, are at higher risk of hyponatremia. In general, though, drinking too much water is rare in healthy adults who consume an average American diet. If you’re concerned about your fluid intake, check with your doctor or a registered dietitian. He or she can help you determine the amount of water that’s best for you.

 

Staying safely hydrated

Resources:  The Mayo Clinic &
Ruth Tan, Health & Nutritional Analyst

Vitamin D – Its Role in Health & Optimal Athletic Performance

Fitness, nutrition, performance, Recovery - Repair | Posted by admin May 24th, 2010

There are a pandemic number of people who are vitamin D deficient.  This has become evident due to increased discovery and sharing of documentation from clinical trials, epidemiological studies, and educational journals.  The end results from an alarming and growing number due to lack of sunshine exposure and inadequate supply of vitamin D from daily food intake.   This added to obesity trends, an aging population, and improved skin products that block formation of vitamin D3.  Until recently, vitamin D was understood to be solely related to bone mineralization and calcium utilization in the body.   Further studies have revealed vitamin D to play a leading role in many additional cell processes.  More than 36 cell types and 10 extra renal organs have been discovered to possess the vitamin D receptor, or VDR. Insufficient vitamin D is related to reduced immunological conditions, cancers of the breast, colon, pancreas, and prostate as well as heart diseases, type I diabetes, rheumatoid arthritis, cognitive impairment, and all cause mortality.  This impressive collection of medical conditions accounts for more than 60% of all deaths in the Western World.

What is Vitamin D?

A fat soluble pro-hormone, vitamin D is a seco-steroid which exists in two forms:  vitamin D2 & vitamin D3.  Vitamin D2 is obtained from yeast and plant material, vitamin D3 is produced endogenously in the skin by the photo-chemical conversion of 7-dehydrocholesterol. Vitamin D circulates in the body bound to the vitamin D binding protein, or VDBP.  Both vitamin D2 and D3 are converted to the biomarker 25-hydoxyvitamin [D (25(OH)D] in the liver and undergoes further hydroxylation in the kidneys to the bio-active form of the hormone 1,25(OH)2D.

The Frequency of vitamin D Deficiency:

The March 2010 issue of the Journal of Clinical Endocrinology & Metabolism points towards an overwhelming 59% of people that are vitamin D insufficient.  This was based on a cross-sectional study designed to establish a relationship between serum 25(OH)D and the degree of fat penetration in muscle.  These results have been duplicated as well in several independent studies of people from all over the United States in recent months.

Adverse Outcomes of Vitamin D Insufficiency:

Presence of 1,25(OH)2D and vitamin D receptors (VDR) in a wide variety of tissues ranging from pancreas, colon, brain, liver, muscle, skin and lung  speaks of its newly found broad involvement in the functionality of bodily systems.  Published literature over several years indicates that the non-bone mineralization effects of vitamin D are autocrine, not endocrine.  Thus, implying these functions are not based or derived for the amount of circulating 1,25(OH)2D in the body, but rather due to the intracellular synthesis of 1,25(OH)2D by these tissues.  Studies also indicate that the levels of 1,25(OH)2D required for these non-calcemic functions are higher than the levels of normal serum 1,25(OH)2D. 

Epidemiological evidences have linked deprived levels of vitamin D conditions to osteoporosis, osteoarthritis, obesity, multiple sclerosis, hypertension, type I diabetes and several cancers.  Vitamin is also effective in maintaining low susceptibility to infections including pulmonary diseases.

Conclusion:

Vitamin D has been shown to have an extensive area of biological influence due to the discovery of VDR and its conversion in several body tissues.  Health, strength and athletic performance can be optimized by measuring the residual levels of vitamin D at the cellular level to determine the degree of insufficiencies in order to adjust diets and nutritional supplements which directly influences athletic strength and recovery time.

Contact us for information on measuring residual vitamins & minerals by functional intracellular analysis at the cellular level – which is directly proportional to the body stores . . .

Reference:  Ray J, Meike W. D-Light: Vitamin D and Good Health. MLO. 2010;42(5):32-38

Vitamin D – Maintains Health & Athletic Performance . . .

Fitness, performance, Recovery - Repair | Posted by admin April 16th, 2010

Vitamin D is an often overlooked nutritional element in athletic achievement, a sleeper nutrient, says John Anderson, a professor emeritus of nutrition at the University of North Carolina regarding Vitamin D and athletic performance. Vitamin D once was thought to be primarily involved in bone development. But a growing body of research suggests that it’s vital in multiple different bodily functions, including allowing body cells to utilize calcium (which is essential for cell metabolism), muscle fibers to develop and grow normally, and the immune system to function properly. Almost every cell in the body has receptors for Vitamin D, Anderson says.  It can up-regulate and down-regulate hundreds, maybe even thousands of genes.   D. Enette Larson-Meyer, an assistant professor in the Department of Family and Consumer Sciences at the University of Wyoming says we’re only at the start of understanding how important it is.

But many of us, it seems, no matter how active and scrupulous we are about health, don’t get enough Vitamin D. Nowadays, many people aren’t going outside very much and most of us assiduously apply sunscreen and take other precautions when we do.

Meanwhile, dietary sources of Vitamin D are meager. Cod-liver oil provides a whopping dose. But a glass of fortified milk provides a fraction of what scientists now think we need per day. A study published online in the journal Pediatrics in 2009 concluded that more than 60 percent of American children, or almost 51 million kids, have insufficient levels of Vitamin D and another 9 percent, or 7.6 million children, are clinically deficient, a serious condition. Cases of childhood rickets, a bone disease caused by lack of Vitamin D, have been rising in the U.S. in recent years.

Although few studies have looked closely at the issue of Vitamin D and athletic performance, those that have are suggestive. A series of strange but evocative studies undertaken decades ago in Russia and Germany, for instance, hint that the Eastern Bloc nations may have depended in part on sunlamps and Vitamin D to produce their preternaturally well-muscled and world-beating athletes. In one of the studies, four Russian sprinters were doused with artificial, ultraviolet light. Another group wasn’t. Both trained identically for the 100-meter dash. The control group lowered their sprint times by 1.7 percent. The radiated runners, by comparison, improved by an impressive 7.4 percent.

More recently, when researchers tested the vertical jumping ability of a small group of adolescent athletes, Larson-Meyer says, they found that those who had the lowest levels of Vitamin D tended not to jump as high, intimating that too little of the nutrient may impair muscle power. Low levels might also contribute to sports injuries, in part because Vitamin D is so important for bone and muscle health. In a Creighton University study of female naval recruits, stress fractures were reduced significantly after the women started taking supplements of Vitamin D and calcium.

Recent studies have shown that, among athletes who train outside year-round, maximal oxygen intake tends to be highest in late summer. The athletes, in other words, are fittest in August, when ultraviolet radiation from the sun is near its zenith. They often then experience an abrupt drop in maximal oxygen intake, beginning as early as September, even though they continue to train just as hard. This decline coincides with the autumnal lengthening of the angle of sunlight. Less ultraviolet radiation reaches the earth and, apparently, sports performance suffers.

Can Vitamin D Improve Athletic Performance?

The active form of vitamin D is a steroid (actually a secosteroid) in the same way that testosterone is a steroid. It is also a hormone (hormone: Greek, meaning: to set in motion) in the same way that growth hormone is a hormone. Steroid hormones are substances made from cholesterol that circulate in the body and work at distant sites by setting in motion genetic protein transcription. That is, both vitamin D and testosterone set in motion your genome, the stuff of life. While testosterone is a sex steroid hormone, vitamin D is a pleomorphic steroid hormone.

If you are vitamin D deficient, the medical literature indicates that the right amount of vitamin D will make you faster, stronger, improve your balance and timing, etc. How much it will improve your athletic ability depends on how deficient you are to begin with. How good an athlete you will be depends on your innate ability, training, and dedication?

However, peak athletic performance also depends upon the neuromuscular cells in your body and brain having unfettered access to the steroid hormone, activated vitamin D. How much activated vitamin D is available to your brain, muscle, and nerves depends on the amount of 25-hydroxyvitamin D in your residual stores. In turn, how much 25-hydroxyvitamin D is in your residual stores depends on how much vitamin D you put in your mouth or how often you expose your skin to UVB light?

References: 

The New York Times, Health – Fitness & Nutrition, 09/23/2009
Vitamin D Council: http://www.vitamindcouncil.org

We support Prevention vs Prescriptions:
GoTo: Prevention not Prescriptions

Quercetin – May Increase Aerobic Endurance & Protect Health

Fitness, performance, Recovery - Repair | Posted by admin March 16th, 2010

Quercetin is a phytochemical that is part of the coloring found in the skins of apples and red onions. It has been isolated and is sold as a dietary supplement.

Healthy body:

Quercetin is a powerful antioxidant. It is also a natural anti-histamine, and anti-inflammatory. Research has shown quercetin may help to prevent cancer, especially prostate cancer. Quercetin’s antihistamine action may help to relieve allergic symptoms and asthma symptoms. The anti-inflammatory properties may help to reduce pain from disorders such as arthritis. Men who are concerned about prostate problems would also benefit from quercetin. Quercetin may also help reduce symptoms like fatigue, depression and anxiety. Another study has investigated the protection afforded by the flavonoid quercetin against macular degeneration. The macula is the yellowish, central part of the retina about 1.5 mm in diameter that produces central vision and color vision. Macular degeneration is the gradual, progressive destruction of the macula that results in lowered central visual acuity needed for most everyday activities, like reading this article. It leads to permanent blindness

Quercetin may not be a household word —

But a study by researchers at the University of South Carolina’s Arnold School of Public Health shows that the powerful antioxidant/anti-inflammatory compound found in fruits and vegetables significantly boosts endurance capacity and maximal oxygen capacity (VO2max) in healthy, active but untrained men and women.
The findings of the study – one of the first in humans to examine the energy-boosting effects of quercetin are reported in the International Journal of Sports Nutrition and Exercise Metabolism.

Dr. Mark Davis, the study’s lead author and a professor of exercise science, said the fatigue-fighting and health properties of quercetin – found in the skins of red apples, red onions, berries and grapes – have implications not only for athletes and soldiers whose energy and performance are tested to the extreme, but also for average adults who battle fatigue and stress daily.

“The natural, biological properties of quercetin that include powerful antioxidant and anti-imflammatory activity, as well as the ability to boost the immune system and increase mitochondria (the powerhouse of the cell) in muscle and brain is great news for those who often think that they’re too tired to exercise,”

Davis said. “While there’s no magic pill to make people get up and move, or to take the place of regular exercise, quercetin may be important in relieving the fatigue that keeps them sedentary and in providing some of the benefits of exercise,” he said. “We believe that this could be a major breakthrough in nutrition.”

For the study, funded in part by the U.S. Department of Defense, 12 participants were randomly assigned to one of two treatments. Half were given 500 milligrams of quercetin twice a day in Tang for seven days. The other subjects drank Tang with placebos. After the seven days of treatment, during which the subjects were told not to alter their physical activity, the participants rode stationary bicycles to the point of fatigue.

Researchers also tested their additional VO2max, one of the most important measures of fitness. Then the participants received the opposite treatment for another seven days before riding the bicycle to the point of fatigue and VO2max tests. Neither the participants nor the research staff knew who received the quercetin Tang or the placebo Tang, and all subjects took part in the quercetin and placebo treatments.

“The participants were healthy, relatively active, college-age students, but they were not physically trained athletes, and they were not taking part in a regular exercise training program,” he said. The results: After taking quercetin for only seven days, the participants had a 13.2 percent increase in endurance and a 3.9 percent increase in VO2max. “These were statistically significant effects that indicate an important improvement in endurance capacity in a very short time,” Davis said. “Quercetin supplementation was able to mimic some of the effects of exercise training.

Although the study did not examine why the results were so dramatic, Davis said pre-clinical data suggest that quercetin may increase the mitochondria in brain and muscle cells. He likened the mitochondria to the “powerhouse of the cell,” producing most of its energy. Mitochondria in brain and muscle also are believed to be fundamentally important in battling age-related dementia, obesity, diabetes and cardiovascular dysfunction.

“One of the most important biological mechanisms for increasing endurance is increasing the mitochondria,” said Davis. “More mitochondria in the brain and muscle would enhance both mental and physical energy, as well as provide a better ability to fight other diseases in which mitochondrial dysfunction are hallmarks.”
Quercetin also appears to have valuable properties to fight inflammation, which has been linked to health problems such as colon cancer and heart disease. Davis’ research group has recently received a National Institutes of Health grant to study quercetin’s effects on colon cancer and others are pending that involve breast cancer. “If the findings of this study and others on the biological mechanisms of quercetin are confirmed in future clinical studies, the implications go beyond improvements in endurance,” he said. “We may find that quercetin may work in conjunction with regular physical activity as an ally in preventing and treating diabetes, obesity and cardiovascular diseases and the degenerative diseases of aging.”

Reference: University of South Carolina’s Arnold School of Public Health

We support Prevention vs Prescriptions:
GoTo: Prevention not Prescriptions

CoQ10 – Reduce Muscle Injuries for Athletes?

performance, Recovery - Repair | Posted by admin January 5th, 2010

Marker levels associated with increased wear and tear in the muscle, like creatine kinase and lipid peroxide, were significantly lower in elite Japanese kendo athletes after consuming co-enzyme Q10 for 20 days, compared to placebo.

Researchers from University of Tsukuba, University of Tokyo, and Kobe Gakuin University report their findings in the British Journal of Nutrition.

The study adds to an ever growing body of studies supporting the benefits of the coenzyme for sports nutrition. Only recently, another Japanese group reported that CoQ10 supplements may boost physical performance and reduce feelings of tiredness associated with exercise (Nutrition, doi:10.1016/j.nut.2007.12.007).

CoQ10 has properties similar to vitamins, but since it is naturally synthesized in the body it is not classed as a vitamin. With chemical structure 2,3-dimethoxy-5-methyl-6-decaprenyl-1,4-benzoquinone, it is also known as ubiquinone because of its ‘ubiquitous’ distribution throughout the human body.

The level of CoQ10 produced by the body begins to drop after the age of about 20, and the coenzyme is concentrated in the mitochondria – the ‘power plant’ of body cells. It plays a vital role in the production of chemical energy by participating in the production of adenosince triphosphate (ATP), the body’s so-called ‘energy currency’.

Beyond it’s participation with mitochondria CoQ10 acts as a potent antioxidant. The coenzyme plays an important role in preserving levels of vitamin E and vitamin C.

kendo athletic study

Michihiro Kon and co-workers recruited 18 elite Japanese kendo student athletes and randomly assigned them to receive daily supplements of CoQ10 (300 mg) or placebo for 20 days. The study was double-blind, meaning neither volunteers nor researchers knew who was receiving the active or placebo dose. The volunteers had daily training sessions of five and a half hours per day for six days during the intervention period. At day three and five of the six day training period, the researchers report that both groups experienced increased in serum creatine kinase activity and the concentration of myoglobin, but these increases were significantly lower in the group receiving the CoQ10 supplements.

Creatine kinase is an enzyme that catalyses the conversion of creatine to phosphocreatine, in the process consuming adenosine triphosphate (ATP) and generating adenosine diphosphate (ADP). Elevated levels of the enzyme are indicative of muscle damage and injury. Moreover, levels of lipid peroxide, a marker of oxidative stress, were also lower in the CoQ10 group after three and five days of training, said the researchers.

“These results indicate that CoQ10 supplementation reduced exercise-induced muscular injury in athletes”

Mechanism

The underlying mechanism appears to be due to the antioxidant potential of the coenzyme, suggest the researchers, although further research is necessary to confirm these findings.

Source: British Journal of Nutrition
“Reducing exercise-induced muscular injury in kendo athletes with supplementation of coenzyme Q10”
Authors: M. Kon, K. Tanabe, T. Akimoto, F. Kimura, Y. Tanimura, K. Shimizu, T. Okamoto, I. Kono

Nutrition – Athletic Performance – Enhances Injury Recovery

nutrition, performance, Recovery - Repair | Posted by admin December 7th, 2009

Scholastic, professional, and recreational athletes may be surprised to learn that nutrition can play a major role in enhancing both performance and the healing of sports injuries.

While ice packs, bandages, rest, and physical therapy are significant in both the short and long-term treatment of injuries such as sprains, strains, cuts and bruises, swelling, and broken bones, researchers are discovering that what an athlete consumes after injury and during the treatment phase can either promote recovery or sometimes delay healing.

The nutrition can not only affect injury rehabilitation positively or negatively, but also aid or hinder the recovery of general and / or chronic muscle or joint soreness following intense exercise workouts, practices, and games. Anti-inflammatory foods and beverages can contribute to the healing of sports injuries are also excellent for post workout / post practice / post game muscle and joint recovery.

The following foods and beverages that have anti-inflammatory qualities and may even accelerate recovery from sports-related or non-athletic injuries:

Grapes, blueberries, strawberries, oranges, kiwis, olive oil, celery, ginger, garlic, curry powder, eggplant, nuts, tuna, salmon, mackerel, black and green tea, and red wine and beer (only when consumed in moderation with food and no more than two alcoholic drinks per day).
Foods rich in vitamin C (citrus fruits, strawberries, kiwis, peppers) and vitamin E (nuts, olive oil) have anti-inflammatory effects. Omega-3 rich fish oil and fatty salt-water fish (salmon, tuna, mackerel) also fight inflammation, besides the wide-spread publicity in recent years of such fish benefiting both heart and brain health.

Another food that has been shown to reduce inflammation is the herb turmeric which is an even better anti-inflammatory than cortisone, one of the most powerful of the steroids.”

Curcumin is found in curry powder, another anti-inflammatory source. Athletes and non-athletes alike who experience chronic shoulder, back and knee pain, for example, may take note of curcumin’s powerful role in easing inflammation.

Another wonderful anti-inflammatory food is eggplant which “contains the important mineral potassium, as well as phytochemicals that have antihistaminic, anti-inflammatory and antioxidant qualities.”

To reduce inflammation, athletes and non-athletes must focus on the #1 beverage: drink ample amounts of plain water in practices and games, both in solid form (when ice packs are applied immediately following an injury to prevent inflammation such as swelling) and in liquid form to hasten recovery during injury rehabilitation as well as help heal chronic joint and back pain.

While water might be king beverage on and off the athletic field, athletes and non-athletes should take advantage of the possible anti-inflammatory capacity of another bodybuilding beverage: milk.
Athletes and non-athletes should also monitor their protein intake and note that high-protein diets boost inflammation.

Another area in which nutrition affects inflammation is overeating or consuming excess calories contributing to either obesity or simply becoming overweight with more body fat than lean muscle.
In general, what an athlete consumes in the hours, days and weeks following an injury may indeed determine how fast he or she returns to action. Some foods and beverages can prevent or reduce inflammation, thus speeding the healing process.

To help the athlete on a quicker road to recovery, some simple anti-inflammatory meals may be just what the doctor ordered.

We support Prevention vs Prescriptions:
GoTo: Prevention not Prescriptions

Glutathione Considered – The Body’s Master Antioxidant

performance, Recovery - Repair | Posted by admin November 22nd, 2009

Antioxidants are intimately involved in the detoxification process and are a very important part of our defenses against environmental toxins and carcinogens. They protect our cells from oxidative stress which can come from our environment in a variety of ways. Because such damage plays a role in the weakening of the immune system that it should come as no surprise that antioxidant supplementation can benefit those with degenerative diseases such cardiovascular disease, cancer, arthritis, neurological diseases and viral infections for example.

Let’s look at one antioxidant –Glutathione- and how glutathione can affect the body. Glutathione is a small molecule made up of three amino acids, which exists in almost every cell of the body. The presence of glutathione is required to maintain the normal function of the immune system. It is known to play a critical role in the multiplication of lymphocytes (the cells that mediate specific immunity), which occurs in the development of an effective immune response. The cells of the immune system produce many oxygen radicals as a result of their normal functioning, resulting in a need for higher concentrations of antioxidants than most cells. Glutathione plays a crucial role in fulfilling this requirement.

Glutathione helps the body fight almost any disease, because it is a powerful antioxidant and helps maintain cellular health and there is a body of research on degenerative disease that has shown that people with degenerative disease are also experiencing low levels of glutathione. Glutathione acts as a detoxifying agent by combining with undesirable substances and ridding the body of them through urine and bile. Aside from being a powerful antioxidant and system detoxifier, it helps repair and protect DNA. Glutathione has been heavily researched and many researchers believe that the degenerative processes take place when the body is lacking the glutathione it needs to protect from degenerative damage.

Glutathione works in a protective role by boosting the immune system, thereby helping the body’s immune response and helps protect the body from oxidative stress – and oxidative stress is associated with aging. Thus, glutathione levels are correlated with aging and physical function. One way to drastically increase glutathione levels, aside from consuming glutathione precursors, is through the ingestion of ascorbic acid – vitamin C3 – and l-glutamine, vitamin E, ALA (Alpha Lipolic Acid), and N-acetylcysteine (NAC) which all help with glutathione synthesis.

Oxidation damage is now recognized as being the key feature of much of the aging processes that our bodies endure. It is known that as we age, there is a precipitous drop in GSH levels. Lower Glutathione levels are implicated in many diseases associated with aging, including Cataracts, Alzheimer’s disease, Parkinson’s, arteriosclerosis and others.

The key to living better is to resist age related deterioration due to oxidation. Recent studies have shown that glutathione play a key role in reducing the oxidation process (antioxidant) and protecting our bodies against free radicals. Supplements that increase glutathione may be a way for us to protect our bodies against the aging process.

What can reducing the oxidative process on the body mean for the athlete?

Many world-class athletes are discovering the importance of glutathione, which when maintained, gives them the edge over the competition. Increased glutathione levels provides athletes with increased strength and endurance, decreased recovery time from injury, less pain and fatigue and possibly an increase in muscle-promoting activities.

During workouts, athletes generate free radicals which in turn lead to muscle fatigue and poorer performance. Glutathione neutralizes these radicals and allows our bodies to recover faster. Recent research indicates that the body has a natural tendency toward many degenerative diseases and aging itself. Some believe how well the body can protect itself from damage and recover from oxidative damage can be determined by measuring the intracellular stores of Glutathione.

We support Prevention vs Prescriptions:
GoTo: Prevention not Prescriptions

Importance of Magnesium – Prevents Health Risks

nutrition, performance | Posted by admin November 6th, 2009

Most people are aware of the importance of getting enough calcium, which remains a widespread problem. Most people don’t know there are other common micronutrient deficiencies that need to be addressed. Magnesium is one of those important micronutrients that doesn’t seem to get much attention, but plays a huge role in the body promoting health & performance.

Unfortunately the diets of all Americans are likely to be deficient and they don’t even know it. Sources estimate that nearly 70 percent of Americans get inadequate doses of magnesium every day and do not consume the daily recommended amounts of Magnesium. Studies have also shown food alone can’t meet the minimal Recommended Daily Allowances (RDA) micronutrient requirements for preventing nutrient-deficiency diseases. For several years experts have suggested that the availability of magnesium in the soil has significantly decreased and it is difficult to get the amount of magnesium needed to function at an optimal level. This, in combination with diets low in whole grains and fresh fruits and vegetables, has led to a general deficiency in the population.

Magnesium is used for more than 300 bodily functions and assists in energy production, maintains healthy bone density and aids the electrical conduction of the heart. Magnesium belongs in a category of minerals called electrolytes because they conduct electrical signals in the body. It is needed in energy metabolism, glucose utilization, protein synthesis, fatty acid synthesis and breakdown, muscle contraction, all ATPase functions, for almost all hormonal reactions, and in the maintenance of cellular ionic balance. It is found in all of the body’s cells, although it is mostly concentrated in the bones, muscles, and soft tissues. Magnesium also affects calcium’s role in homeostasis through two mechanisms.

Magnesium deficiency results in altered cardiovascular function, including electrocardiographic abnormalities, impaired carbohydrate metabolism, with insulin resistance and decreased insulin secretion, and high blood pressure. Even a mild deficiency causes sensitiveness to noise, nervousness, irritability, mental depression, confusion, twitching, trembling, apprehension, insomnia, muscle weakness and cramps in the toes, feet, legs, or fingers.

In active adults and athletes low magnesium levels can acutely contribute to early fatigue, nausea, muscle cramps & an irregular heartbeat during exercise. Magnesium as well as zinc, chromium and selenium are excreted in the sweat or as part of the process of metabolic acceleration. Heavy sweat loss can interfere with the important functions for which magnesium and other electrolytes are responsible. Also, the rate of magnesium loss is increased in conditions of high humidity and high temperature. An important consideration for athletes is the rate of magnesium loss that occurs during heavy physical activity. Heavy exercise makes you lose magnesium in the urine and scientific evidence suggests this is why long distance runners may suddenly drop dead with heart arrhythmias.

In a very tightly controlled three-month US study carried out last year, the effects of magnesium depletion on exercise performance in 10 women were observed. In the first month, the women received a magnesium-deficient diet (112mgs per day), which was supplemented with 200mgs per day of magnesium to bring the total magnesium content up to the RDA of 310mgs per day. In the second month, the supplement was withdrawn to make the diet magnesium-deficient, but in the third month it was reintroduced to replenish magnesium levels.

At the end of each month, the women were asked to cycle at increasing intensities until they reached 80% of their maximum heart rate, at which time a large number of measurements were taken, including blood tests, ECG and respiratory gas analysis.

The researchers found that, for a given workload, peak oxygen uptake, total and cumulative net oxygen utilization and heart rate all increased significantly during the period of magnesium restriction, with the amount of the increase directly related to the extent of magnesium depletion. In plain English, a magnesium deficiency reduced metabolic efficiency, increasing the oxygen consumption and heart rate required to perform work – exactly what an athlete doesn’t want!

No serious athlete or trainer can afford to overlook the benefits that magnesium brings to athletic performance and the recovery process. Research suggests that even a small shortfall in magnesium can lead to greatly reduced performance and stamina. Many athletic medical specialists believe that magnesium is the single most important mineral to sports nutrition. Not only does it help optimize an athlete’s performance, but it speeds up recovery from fatigue and injuries.

Optimal muscle contraction and relaxation is the foundation of an athlete’s performance. Proper magnesium levels are required for muscles to relax fully following a contraction. Some doctors believe that injuries to hamstring muscles can be partially avoided through intake of magnesium and stated that a shortened hamstring is a result of lack of available magnesium.

The first step is to eat more magnesium rich foods, especially beans, nuts and vegetables. The more active a person is the greater the need to make sure there is a variety of balanced micronutrient-enriched foods into their diet. The challenge is to eat large amounts of magnesium-rich foods on a consistent basis. Often this proves difficult and unrealistic, as an athlete’s requirement of magnesium intake far surpasses that of an average person. Micronutrient supplementation still may be needed to be incorporated into their wellness program as a preventative protocol for preventing these observed deficiencies.

Another important step is to have your levels checked. The residual level of magnesium in the cells is what’s important. The body does all it can to keep the blood levels normal, so if there is a body deficit, it will be found within the cells. Work with a practitioner that will check your RBC-magnesium level (the level of magnesium in red blood cells) or provide an FIA (functional intracellular analysis) for your body’s residual nutrient levels that will benchmark your cell level status to find the amount of supplements needed to achieve normal levels. Recommended intake for endurance athletes is 500 to 800 mg daily.

There is virtually no one that cannot benefit greatly from increasing daily magnesium intake. In terms of health and longevity magnesium is essential. For the professional athlete it means the difference between winning and losing, and in some cases, living and dying.

GoTo: Prevention not Prescriptions